CSE679: Computer Network Review r Review of the uncounted quiz r Computer network review.

Slides:



Advertisements
Similar presentations
Transportation Layer (2). TCP full duplex data: – bi-directional data flow in same connection – MSS: maximum segment size connection-oriented: – handshaking.
Advertisements

Transport Layer3-1 TCP. Transport Layer3-2 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r full duplex data: m bi-directional data flow in same connection.
Data Communications and Computer Networks Chapter 3 CS 3830 Lecture 16 Omar Meqdadi Department of Computer Science and Software Engineering University.
1 Chapter 3 Transport Layer. 2 Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4.
1 Transport Layer Lecture 9 Imran Ahmed University of Management & Technology.
CS 471/571 Transport Layer 5 Slides from Kurose and Ross.
CSE551: Computer Network Review r Network Layers r TCP/UDP r IP.
Computer Networks 2 Lecture 2 TCP – I - Transport Protocols: TCP Segments, Flow control and Connection Setup.
TCP segment structure source port # dest port # 32 bits application data (variable length) sequence number acknowledgement number rcvr window size ptr.
EEC-484/584 Computer Networks Lecture 15 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Transport Layer 3-1 outline r TCP m segment structure m reliable data transfer m flow control m congestion control.
Transport Layer 3-1 Fast Retransmit r time-out period often relatively long: m long delay before resending lost packet r detect lost segments via duplicate.
Chapter 3: Transport Layer
The Transport Layer. 2 Purpose of this layer Interface end-to-end applications and protocols –Turn best-effort IP into a usable interface Data transfer.
Transport Layer 3-1 Outline r TCP m Congestion control m Flow control.
Transport Layer 3-1 Transport Layer r To learn about transport layer protocols in the Internet: m TCP: connection-oriented protocol m Reliability protocol.
Transport Layer3-1 Transport Layer Our goals: r understand principles behind transport layer services: m multiplexing/demultipl exing m reliable data transfer.
Transport Layer 3-1 Transport Layer r To learn about transport layer protocols in the Internet: m TCP: connection-oriented protocol m Reliability protocol.
1 EE 689 Lecture 3 Review of Last Lecture UDP & Multimedia TCP & UDP Interaction.
1 689 Lecture 2 Review of Last Lecture Networking basics TCP/UDP review.
Lecture 8 Chapter 3 Transport Layer
EEC-484/584 Computer Networks Lecture 13 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Transport Layer session 1 TELE3118: Network Technologies Week 9: Transport Layer Basics Some slides have been taken from: r Computer Networking:
1 Ch. 7 : Internet Transport Protocols. Transport Layer Our goals: r understand principles behind transport layer services: m Multiplexing / demultiplexing.
2: Application Layer 1 1DT066 Distributed Information System Chapter 3 Transport Layer.
8-1 Transport Layer Our goals: r understand principles behind transport layer services: m multiplexing/demultipl exing m reliable data transfer m flow.
EEC-484/584 Computer Networks Lecture 13 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
IP-UDP-RTP Computer Networking (In Chap 3, 4, 7) 건국대학교 인터넷미디어공학부 임 창 훈.
Review: –What is AS? –What is the routing algorithm in BGP? –How does it work? –Where is “policy” reflected in BGP (policy based routing)? –Give examples.
Network LayerII-1 RSC Part III: Transport Layer 3. TCP Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are, mainly, part.
Transport Layer1 Reliable Transfer Ram Dantu (compiled from various text books)
CS 1652 The slides are adapted from the publisher’s material All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Jack Lange.
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 All.
3: Transport Layer3b-1 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r full duplex data: m bi-directional data flow in same connection m MSS: maximum.
2: Transport Layer 21 Transport Layer 2. 2: Transport Layer 22 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 r full duplex data: m bi-directional data.
TCOM 509 – Internet Protocols (TCP/IP) Lecture 04_b Transport Protocols - TCP Instructor: Dr. Li-Chuan Chen Date: 09/22/2003 Based in part upon slides.
Transport Layer and UDP Tahir Azim Ref:
ECE453 – Introduction to Computer Networks Lecture 14 – Transport Layer (I)
Fall 2005 By: H. Veisi Computer networks course Olum-fonoon Babol Chapter 6 The Transport Layer.
Transport Layer3-1 Chapter 3: Transport Layer Our goals: r understand principles behind transport layer services: m multiplexing/demultipl exing m reliable.
Transport Layer1 Ram Dantu (compiled from various text books)
Lecture91 Administrative Things r Return homework # 1 r Review some problems in homework # 1 r Questions about grading? Yona r WebCT for CSE245 is working!
Transport Layer 3-1 Chapter 3 Outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP.
1 End-to-End Protocols (UDP, TCP, Connection Management)
Prof. Younghee Lee 1 1 Computer Networks u Lecture 5: Transport services and protocols Prof. Younghee Lee * Some part of this teaching materials are prepared.
MULTIPLEXING/DEMULTIPLEXING, CONNECTIONLESS TRANSPORT.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
Transport Layer3-1 Transport Layer If you are going through Hell Keep going.
Transport Layer3-1 Chapter 3: Transport Layer Our goals: r understand principles behind transport layer services: m multiplexing/demultipl exing m reliable.
CIS679: TCP and Multimedia r Review of last lecture r TCP and Multimedia.
Transport Layer1 Goals: r understand principles behind transport layer services and protocols: m UDP m TCP Overview: r transport layer services r multiplexing/demultiplexing.
CSEN 404 Transport Layer II Amr El Mougy Lamia AlBadrawy.
2: Transport Layer 11 Transport Layer 1. 2: Transport Layer 12 Part 2: Transport Layer Chapter goals: r understand principles behind transport layer services:
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
DMET 602: Networks and Media Lab Amr El Mougy Yasmeen EssamAlaa Tarek.
CSEN 404 Transport Layer I Amr El Mougy Lamia Al Badrawy.
CIS679: UDP and Multimedia r Review of last lecture r UDP and multimedia.
09-Transport Layer: TCP Transport Layer.
Chapter 3 outline 3.1 Transport-layer services
Chapter 3 outline 3.1 Transport-layer services
TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 full duplex data:
Introduction to Networks
Internet and Intranet Protocols and Applications
Transport Layer Goals: Overview:
6. TCP/IP 주요 내용 OSI Transport Layer TCP/UDP.
Chapter 5 Transport Layer Introduction
Transport Protocols: TCP Segments, Flow control and Connection Setup
Chapter 5 Transport Layer Introduction
Transport Protocols: TCP Segments, Flow control and Connection Setup
Presentation transcript:

CSE679: Computer Network Review r Review of the uncounted quiz r Computer network review

Network Layers

Transport Layers r TCP/UDP

TCP r Transport Control Protocol r Flow control and Responds to congestion r Reliable In-order delivery r “Nice” Protocol

TCP segment structure source port # dest port # 32 bits application data (variable length) sequence number acknowledgement number rcvr window size ptr urgent data checksum F SR PAU head len not used Options (variable length) URG: urgent data (generally not used) ACK: ACK # valid PSH: push data now (generally not used) RST, SYN, FIN: connection estab (setup, teardown commands) # bytes rcvr willing to accept counting by bytes of data (not segments!) Internet checksum (as in UDP)

Reliable Delivery r Sender, Receiver keep track of bytes sent and bytes received. r Acks have an indication of next byte expected. r Three duplicate acks considered a packet loss - sender retransmits

TCP seq. #’s and ACKs Seq. #’s: m byte stream “number” of first byte in segment’s data ACKs: m seq # of next byte expected from other side m cumulative ACK Q: how receiver handles out-of-order segments m A: TCP spec doesn’t say, - up to implementer Host A Host B Seq=42, ACK=79, data = ‘C’ Seq=79, ACK=43, data = ‘C’ Seq=43, ACK=80 User types ‘C’ host ACKs receipt of echoed ‘C’ host ACKs receipt of ‘C’, echoes back ‘C’ time simple telnet scenario

TCP Flow Control r Window based r Sender cannot send more data than a window without acknowledgements. r Window is a minimum of receiver’s buffer and ‘congestion window’. r After a window of data is transmitted, in steady state, acks control sending rate.

Flow Control

TCP Slowstart r exponential increase (per RTT) in window size (not so slow!) r loss event: timeout (Tahoe TCP) and/or or three duplicate ACKs (Reno TCP) initialize: Congwin = 1 for (each segment ACKed) Congwin++ until (loss event OR CongWin > threshold) Slowstart algorithm Host A one segment RTT Host B time two segments four segments

TCP Congestion Avoidance /* slowstart is over */ /* Congwin > threshold */ Until (loss event) { every w segments ACKed: Congwin++ } threshold = Congwin/2 Congwin = 1 perform slowstart Congestion avoidance 1 1: TCP Reno skips slowstart (fast recovery) after three duplicate ACKs

UDP r No reliability, flow control, congestion control. r Sends data in a burst. r Provides multiplexing and demultiplexing of sources. r Most multimedia applications using UDP

UDP: User Datagram Protocol [RFC 768] r “no frills,” “bare bones” Internet transport protocol r “best effort” service, UDP segments may be: m lost m delivered out of order to app r connectionless: m no handshaking between UDP sender, receiver m each UDP segment handled independently of others Why is there a UDP? r no connection establishment (which can add delay) r simple: no connection state at sender, receiver r small segment header r no congestion control: UDP can blast away as fast as desired

UDP segment structure r often used for streaming multimedia apps m loss tolerant m rate sensitive r other UDP uses (why?): m DNS m SNMP r reliable transfer over UDP: add reliability at application layer m application-specific error recover! source port # dest port # 32 bits Application data (message) UDP segment format length checksum Length, in bytes of UDP segment, including header

UDP Consequences r Most applications today use TCP r Stability of network relies on congestion response of applications r Large scale use of UDP could lead to problems - no congestion response r Large number of multimedia applications expected - move larger amounts of data

Unfairness r When UDP and TCP compete, UDP wins by pushing TCP into congestion

TCP-Friendly r Throughput of a TCP connection m P: the packet size m p: the lost probability of a packet r Limit flows to TCP-style BW r Don’t know RTT exactly r Why should everyone follow this exactly? r Monitoring individual flows difficult

Conclusion r TCP m TCP not well suited to multimedia. m TCP is a well understood, ‘nice’ protocol. m Multiplicative decrease/additive increase allows fair sharing of BW and avoids congestion collapse. m UDP is being used by multimedia developers. r UDP m UDP can be tuned to better support multimedia applications. m TCP-friendly m Rate-based adaptation Packet-pair m Hop-by-hop control