1 SWE 205 - Introduction to Software Engineering Lecture 4.

Slides:



Advertisements
Similar presentations
Software Processes.
Advertisements

©Ian Sommerville 2004Software Engineering, 7th edition. Chapter 4 Slide 1 Software Processes.
Unit 2. Software Lifecycle
Lectures 2 & 3 Software Processes.
©Ian Sommerville 2006Software Engineering, 8th edition. Chapter 4 Slide 1 Software Processes.
©Ian Sommerville 2004Software Engineering, 7th edition. Chapter 1 Slide 1 المحاضرة الثانية.
Software Processes Modified by Randy K. Smith
Chap 2. Software Processes
What is software? Computer programs and associated documentation
1 Chapter 4 - Part 1 Software Processes. 2 Software Processes is: Coherent (logically connected) sets of activities for specifying, designing, implementing,
CSE 470 : Software Engineering The Software Process.
1 Chapter 2 Software Processes An overview of conventional software process models, Rational Unified Process, and CASE tools.
EE6421/ED5031Software Engineering Slide 1 Section # 2 (Read Sommerville Ch (3 or 4) and Pressman Ch 2) Software Processes.
COMP 474 Software Engineering Professor William L. Honig.
The software process A software process is a set of activities and associated results which lead to the production of a software product. This may involve.
Software Processes Overview
 © Ian Sommerville A software process model is an abstract representation of a process. It presents a description of a process from some particular perspective.
Software Engineering COMP 201 1COMP201 - Software Engineering Lecturer: Sebastian Coope Ashton Building, Room G.18 COMP.
ISNE101 Dr. Ken Cosh. Recap  We’ve been talking about Software…  Application vs System Software  Programming Languages  Vs Natural Languages  Syntax,
©Ian Sommerville 2004Software Engineering, 7th edition. Chapter 4 Slide 1 Software Processes.
Software Processes Coherent sets of activities for specifying, designing, implementing and testing software systems.
SYSC System Analysis and Design
Software Process Models
©Ian Sommerville 2000Software Engineering, 6th edition. Chapter 3Slide 1 Software Processes l Coherent sets of activities for specifying, designing, implementing.
Modified from Sommerville’s originalsSoftware Engineering, 7th edition. Chapter 4 Slide 1 Software Process Models.
©Ian Sommerville 2004Software Engineering, 7th edition. Chapter 4 Slide 1 Software Process Models.
©Ian Sommerville 2000 Software Engineering, 6th edition Slide 1 Software Processes l Coherent sets of activities for specifying, designing, implementing.
©Ian Sommerville 2004Software Engineering, 7th edition. Chapter 4 Slide 1 Software Processes.
CMSC 345, Version 1/03 An Overview of Software Processes Reference: Software Engineering, by Ian Sommerville, 6 th edition, Chapter 3.
Chapter 3 Software Processes.
Lecture 2 Software Processes CSC301-Winter 2011 Hesam C. Esfahani
Software Processes Sumber dari : cc.ee.ntu.edu.tw/~farn/courses/SE/ch4.ppt.
Software Processes. Objectives To introduce software process models To describe three generic process models and when they may be used To describe outline.
Software Processes.
©Ian Sommerville 2004Software Engineering, 7th edition. Chapter 4 Slide 1 Software Processes.
©Ian Sommerville 2000, Mejia-Alvarez 2009 Slide 1 Software Processes l Coherent sets of activities for specifying, designing, implementing and testing.
©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 1 Slide 1 Software Processes (Chapter 3)
Software Processes lecture 8. Topics covered Software process models Process iteration Process activities The Rational Unified Process Computer-aided.
©Ian Sommerville 2004Software Engineering, 7th edition. Chapter 4 Slide 1 Software Processes.
Software Processes Software and Its Engineering - adopted & adapted from I. Sommerville, 2004.
©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 3 Slide 1 Software Processes l Coherent sets of activities for specifying, designing,
 CS 5380 Software Engineering Chapter 2 – Software Processes Chapter 2 Software Processes1.
Lecture 3 Software Engineering Models (Cont.)
©Ian Sommerville 2004Software Engineering, 7th edition. Chapter 4 Slide 1 Software Processes.
CSc 461/561 Software Engineering Lecture 2 – Software Processes.
Chapter 2 – Software Processes Lecture 2 1Chapter 2 Software Processes.
An Introduction to Software Engineering
Chapter 2 Software Processes (2/2) Yonsei University 2 nd Semester, 2015 Sanghyun Park.
4. Software Processes Software Engineering. Objectives To introduce software process models To describe three generic process models and when they may.
©Ian Sommerville 2004Software Engineering, 7th edition. Chapter 4 Slide 1 Software Processes.
Chapter 13: Software Life Cycle Models Omar Meqdadi SE 273 Lecture 13 Department of Computer Science and Software Engineering University of Wisconsin-Platteville.
CSC 480 Software Engineering Lecture 2 August 26, 2002.
September 30, 2010COMS W41561 COMS W4156: Advanced Software Engineering Prof. Gail Kaiser
©Ian Sommerville 2004Software Engineering, 7th edition. Chapter 4 Slide 1 Software Processes.
©Ian Sommerville 2006Software Engineering, 8th edition. Chapter 4 Slide 1 Software Processes.
Chapter 2 – Software Processes Lecture 2 1Chapter 2 Software Processes.
Software Engineering, 8th edition. Chapter 4 1 Courtesy: ©Ian Sommerville 2006 FEB 13 th, 2009 Lecture # 5 Software Processes.
Software Engineering Saeed Akhtar The University of Lahore Lecture 3 Originally shared for: mashhoood.webs.com.
1 Chapter 2 SW Process Models. 2 Objectives  Understand various process models  Understand the pros and cons of each model  Evaluate the applicability.
©Ian Sommerville 2004Software Engineering, 7th edition. Chapter 4 Slide 1 Software Processes.
1 SYS366 Week 2 - Lecture Visual Modeling and Process.
Laurea Triennale in Informatica – Corso di Ingegneria del Software I – A.A. 2006/2007 Andrea Polini II. Software Life Cycle.
Software engineering Software Processes.
Software Processes (a)
Chapter 2 SW Process Models
Software Processes.
An Overview of Software Processes
Software Processes.
Presentation transcript:

1 SWE Introduction to Software Engineering Lecture 4

2 Lecture Objectives Software processes and their principle characteristics. Generic software process models Waterfall model Evolutionary development Component based system development

3 What is a software process? A set of ordered tasks to produce indented output of some kind Involving activates, constraints; and Resources The process of building a software product Life cycle - describes the life of the software from conception through its implementation, delivery, use and maintenance.

4 Why we need software process? Common understanding of the activities, resources and constraints involved in software development. Creating processes helps Find inconsistencies, Redundancies; and Omissions

5 Generic software process models The waterfall model Separate and distinct phases of specification and development. Evolutionary development Specification, development and validation are interleaved. Component-based software engineering The system is assembled from existing components.

6 Waterfall Model

7 Inflexible partitioning of the project into distinct stages Makes it difficult to respond to changing customer requirements. Model is only appropriate when the requirements are well-understood; and changes will be fairly limited during the design process. Few business systems have stable requirements.

8 Evolutionary development Exploratory development Objective is to work with customers and to evolve a final system from an initial outline specification. Starts with well-understood requirements and add new features as proposed by the customer. Throw-away prototyping Objective is to understand the system requirements. Starts with poorly understood requirements to clarify what is really needed.

9 Evolutionary Development

10 Evolutionary Development Problems Lack of process visibility; Systems are often poorly structured; Special skills (e.g. in languages for rapid prototyping) may be required. Applicability For small or medium-size interactive systems; For parts of large systems (e.g. the user interface); For short-lifetime systems.

11 Component Based System Engineering Systematic reuse where systems are integrated from existing components or COTS (Commercial-off-the-shelf) systems. This approach is becoming increasingly used as component standards have emerged.

12 Component Based System Engineering

13 Process Iterations System requirements ALWAYS evolve in the course of a project Process iteration where earlier stages are reworked is always part of the process for large systems. Iteration can be applied to any of the generic process models. Two (related) approaches Incremental delivery; Spiral development.

14 Incremental Delivery Rather than deliver the system as a single delivery, Development and delivery is broken down into increments; With each increment delivering part of the required functionality. User requirements are prioritised and the highest priority requirements are included in early increments.

15 Incremental Delivery Requirements are frozen though requirements for later increments can continue to evolve.

16 Incremental Delivery - Advantages Customer value can be delivered with each increment so system functionality is available earlier. Early increments act as a prototype to help elicit requirements for later increments. Lower risk of overall project failure. The highest priority system services tend to receive the most testing.

17 Spiral Development Process is represented as a spiral rather than as a sequence of activities with backtracking. Each loop in the spiral represents a phase in the process. No fixed phases such as specification or design - loops in the spiral are chosen depending on what is required.

18 Spiral Development Model (1) Development & Validation (2) Plan next phase!!!!! Risks are explicitly assessed and resolved throughout the process.

19 Key Points Software processes are the activities involved in producing and evolving a software system. General activities are specification, design and implementation, validation and evolution. Generic process models describe the organisation of software processes. For example waterfall model, evolutionary development; and component-based software engineering. Iterative process models describe the software process as a cycle of activities.