1 1 st Light AO 4 LBT Pyramid WFS Adaptive Secondary MMT Unit.

Slides:



Advertisements
Similar presentations
The GMT NGS WFS design Presented by S. Esposito. The team L. Fini G. Agapito L. Carbonaro A. Puglisi L. Busoni V. Biliotti A. Riccardi S. Esposito E.
Advertisements

Fast & Furious: a potential wavefront reconstructor for extreme adaptive optics at ELTs Visa Korkiakoski and Christoph U. Keller Leiden Observatory Niek.
Osservatorio di Arcetri Potsdam May st light LBT AO: PDR Optical Test Tower for the LBT Adaptive Optics System A. Riccardi 1, P. Salinari.
TMT.OPT.PRE DRF011 Thirty Meter Telescope Secondary and Tertiary Mirror Systems International Symposium on Photoelectronic Detection and Imaging.
GLAO Workshop, Leiden; April 26 th 2005 Ground Layer Adaptive Optics, N. Hubin Ground Layer Adaptive Optics Status and strategy at ESO Norbert Hubin European.
A First-Light AO system for LBT AGW Unit: a conceptual design S. Esposito, M. Accardo, C. Baffa, V. Biliotti, G. Brusa, M. Carbillet, D. Ferruzzi, L. Fini,
The adaptive secondary mirror. Current technology for MMT/LBT A. Riccardi 1, G. Brusa 1, C. Del Vecchio 1, P. Salinari 1, R. Biasi 2, M. Andrighettoni.
INAF-Osservatorio di Arcetri 3-4 May Tuorla Observatory Opticon Meeting Adaptive secondary and primary mirrors for ELTs A. Riccardi 1, G. Brusa 1,2,
Géraldine Guerri Post-doc CSL
The Project Office Perspective Antonin Bouchez 1GMT AO Workshop, Canberra Nov
October 10th, 2007Osservatorio Astrofisico di Arcetri1 Application of the pyramid wavefront sensor to the cophasing of large segmented telescopes F. Quirós-Pacheco,
Adaptive optics and wavefront correctors.
FLAO Alignment Procedures G. Brusa, S. Esposito FLAO system external review, Florence, 30/31 March 2009.
Adaptive Optics for Wavefront Correction of High Average Power Lasers Justin Mansell, Supriyo Sinha, Todd Rutherford, Eric Gustafson, Martin Fejer and.
“TUNABLE FILTER TECNIQUE :” A phase ambiguity solution with PYramid Phasing Sensor (PYPS)
LBT AGW units Design Review Mar.2001 General Concept Performance specifications and goals The off-axis unit The mechanical support structure The control.
NGAO 1-tier Draft Optical Relay Design P. Wizinowich 12/7/07.
Optical Alignment with Computer Generated Holograms
PERFORMANCE OF THE DELPHI REFRACTOMETER IN MONITORING THE RICH RADIATORS A. Filippas 1, E. Fokitis 1, S. Maltezos 1, K. Patrinos 1, and M. Davenport 2.
Use of a commercial laser tracker for optical alignment James H. Burge, Peng Su, Chunyu Zhao, Tom Zobrist College of Optical Sciences Steward Observatory.
Thermally Deformable Mirrors: a new Adaptive Optics scheme for Advanced Gravitational Wave Interferometers Marie Kasprzack Laboratoire de l’Accélérateur.
Telescope Errors for NGAO Christopher Neyman & Ralf Flicker W. M. Keck Observatory Keck NGAO Team Meeting #4 January 22, 2007 Hualalai Conference Room,
MCAO A Pot Pourri: AO vs HST, the Gemini MCAO and AO for ELTs Francois Rigaut, Gemini GSMT SWG, IfA, 12/04/2002.
Blue Dot Team « Multi aperture imaging ». BDT sept MAI techniques High accuracy visibility measurement Differential interferometry Nulling.
1 On-sky validation of LIFT on GeMS C. Plantet 1, S. Meimon 1, J.-M. Conan 1, B. Neichel 2, T. Fusco 1 1: ONERA, the French Aerospace Lab, Chatillon, France.
Real-Time Phase-Stamp Range Finder with Improved Accuracy Akira Kimachi Osaka Electro-Communication University Neyagawa, Osaka , Japan 1August.
MCAO Adaptive Optics Module Subsystem Optical Designs R.A.Buchroeder.
Center for Astronomical Adaptive Optics Ground layer wavefront reconstruction using dynamically refocused Rayleigh laser beacons C. Baranec, M. Lloyd-Hart,
A visible-light AO system for the 4.2 m SOAR telescope A. Tokovinin, B. Gregory, H. E. Schwarz, V. Terebizh, S. Thomas.
19 February 2009 Cophasing sensor for synthetic aperture optics applications First steps of the development of a cophasing sensor for synthetic aperture.
LBT FLAO system: an attempt to highlight Piero’s views about the project. Disclaimer: the opinions contained in the presentation are shared between most.
Position sensing in Adaptive Optics Christopher Saunter Durham University Centre for Advanced Instrumentation Durham Smart Imaging.
Edimburg June 2006 Fast detectors 1 Fast detectors (for E-ELT AO) Philippe Feautrier INSU/CNRS-LAOG.
Adaptive Optics1 John O’Byrne School of Physics University of Sydney.
AO for ELT – Paris, June 2009 MAORY Multi conjugate Adaptive Optics RelaY for the E-ELT Emiliano Diolaiti (INAF–Osservatorio Astronomico di Bologna)
LBT External Review December AO status and perspectives P. Salinari 1 AO status and perspectives.
Tomographic reconstruction of stellar wavefronts from multiple laser guide stars C. Baranec, M. Lloyd-Hart, N. M. Milton T. Stalcup, M. Snyder, & R. Angel.
Lyot Stop Focal Plane Mask OAP3 Out of plane spherical mirror.
AO review meeting, Florence, November FLAO operating Modes Presented by: S. Esposito Osservatorio Astrofisico di Arcetri / INAF.
FLAO system test plan in solar tower S. Esposito, G. Brusa, L. Busoni FLAO system external review, Florence, 30/31 March 2009.
The Hobby-Eberly Telescope Mirror Alignment Recovery System Marsha Wolf Graduate Student UT Astronomy Department.
High Contrast Imaging with Focal Plane Wavefront Sensing and PIAA for Subaru Telescopes Olivier Guyon Basile Gallet
February 2013 Ground Layer Adaptive Optics (GLAO) Experiment on Mauna Kea Doug Toomey.
ATLAS The LTAO module for the E-ELT Thierry Fusco ONERA / DOTA On behalf of the ATLAS consortium Advanced Tomography with Laser for AO systems.
Strehl Ratio estimation. SR from H band images High Strehl PSF ->fitting with Zernike modes We suppose: No relevant loss of energy due to high modes (Z>36)
1 High-order coronagraphic phase diversity: demonstration of COFFEE on SPHERE. B.Paul 1,2, J-F Sauvage 1, L. Mugnier 1, K. Dohlen 2, D. Mouillet 3, T.
Zero field The 25 ‑ m f /0.7 primary mirror for the Giant Magellan Telescope (GMT) is made of seven 8.4 ‑ m segments in a close packed array. Each of the.
Experimental results of tomographic reconstruction on ONERA laboratory WFAO bench A. Costille*, C. Petit*, J.-M. Conan*, T. Fusco*, C. Kulcsár**, H.-F.
FLAO_01: FLAO system baseline & goal performance F. Quirós-Pacheco, L. Busoni FLAO system external review, Florence, 30/31 March 2009.
March 31, 2000SPIE CONFERENCE 4007, MUNICH1 Principles, Performance and Limitations of Multi-conjugate Adaptive Optics F.Rigaut 1, B.Ellerbroek 1 and R.Flicker.
The Adaptive Mirror for the E-ELT
Atmospheric Turbulence: r 0,  0,  0 François Wildi Observatoire de Genève Credit for most slides : Claire Max (UC Santa Cruz) Adaptive Optics in the.
Page 1 Adaptive Optics in the VLT and ELT era Wavefront sensors, correctors François Wildi Observatoire de Genève.
Some Thoughts on Ground Layer Adaptive Optics & Adaptive Secondary Mirrors for Keck P. Wizinowich 9/15/14 1.
Osservatorio Astronomico di Padova A study of Pyramid WFS behavior under imperfect illumination Valentina Viotto Demetrio Magrin Maria Bergomi Marco Dima.
Pre-focal wave front correction and field stabilization for the E-ELT
College of Optical Sciences The University of Arizona Study of birefringence effect on Fizeau interferometry: analytical and simulation results Chunyu.
Fundamentals of adaptive optics and wavefront reconstruction Marcos van Dam Institute for Geophysics and Planetary Physics, Lawrence Livermore National.
Charts for TPF-C workshop SNR for Nulling Coronagraph and Post Coron WFS M. Shao 9/28/06.
1 A First-Light AO system for LBT AGW Unit: a conceptual design S. Esposito, M. Accardo, C. Baffa, V. Biliotti, G. Brusa, M. Carbillet, D. Ferruzzi, L.
J. H. Burgea,b, W. Davisona, H. M. Martina, C. Zhaob
Parameters characterizing the Atmospheric Turbulence: r0, 0, 0
Preparing the optical calibration of the M4-Deformable mirror for the E-ELT Briguglio, R., Pariani, G., Xompero, M., Riccardi, A. ADONI meeting, Firenze.
Date of download: 6/22/2016 Copyright © 2016 SPIE. All rights reserved. Synopsis of the pyramidal surface parametrization. Figure Legend: From: Modeling.
Characterizing the Atmospheric Turbulence & Systems engineering François Wildi Observatoire de Genève Credit for most slides : Claire Max (UC Santa Cruz)
Lecture 14 AO System Optimization
Pyramid sensors for AO and co-phasing
Extended Scene Shack-Hartmann
Photon counting CCDs as wavefront sensors for LBT A.O. systems
Optics Alan Title, HMI-LMSAL Lead,
Presentation transcript:

1 1 st Light AO 4 LBT Pyramid WFS Adaptive Secondary MMT Unit

2 The two main system characteristic Adaptive Secondary MMT Unit LBT AdSec unit: LBT actuators 1ms average settling time Perform WF reconstruction Pyramid WFS WFS board (300x400) moveable for source acq. Adj. samp. 30x30,15x15,10x10…(on-chip binning) RON 3.5 Lim R mag: 16.7 (0.2 on axis SR, 0.6” r0) Use of LLLCCD CCD60 128x128 WFS camera EEV39/L3CCD Acquisition camera WFS path ACQ. Camera path

3 ELTs application of LBT AO components Adaptive secondaries technologies to be used for adaptive segments for ELTs. Use of Pyramid WFS as co-phasing sensor for ELTs segmented mirrors Use of Pyramid sensor as High Order WFS > 100 subapertures Use of LLL CCD in future ELTs AO system. Needs for many pixels 256x256 and 1Kfps speed with low RON <1e- JRA1: High Order WFS comparison : Development of Adaptive secondaries having 1500 acts. Fundings form European Community FP6 : Co-phasing sensor to test at VLT (APE experiment) : Development of adaptive segments

4 Adaptive Primary: OWL case Using AdSec technique for OWL [pitch mm] OWL OWL optical train M1100m Spherical 1 M233.5m Flat 3 M3 8.2m Aspherical 12 M48.1mAspherical 12 M5 4.2 m Aspheric 24 M62.4mElliptical 42 M54.2m km M62.4m 42 0km courtesy A. Riccardi M6 2.5m (0km) act. Pitch 27mm 6060 acts M5 4.2m (7.8km) act. Pitch 80mm 2190 acts Adaptive segments for M1 or M2 ? Overall fitting error 290nm (Kband) P. Dierickx, SPIE 2002, Hawaii K band Adaptive surfaces

5 Co-Phasing Using Pyramid Sensor PWFS (2) assembly FISBA interf. Unit (1) Unit for (3) Differential piston FISBA Diff. Pist unit PWFS Aim of the set up is to measure at the same time a certain differential piston introduced using (3) with the two instrument FISBA (1) and PWFS (2). Reflecting surfaces of the cubes actuator for cube displacements The lab unit devoted to introduce A differential piston

6 WFS signal versus differential piston Initial signal value End signal value time Dinamical behaviour of the DP signal on a single pixel when the DP is changing in time of more than 4  Signal computation uses the same formula used for wavefront Derivative estimation Pupil images on CCD 2D signal from pupils

7 Differantial piston measurement accuracy RMS of pyramid measurement with respect to fitting values is 15.8 nm (9 deg in phase angle) RMS of pyramid measurement with respect to fitting values is 15.8 nm (9 deg in phase angle) Comparison of interferometer and pyramid measurements of the same differential piston,using: 1)LBT pyramid wavefront sensor (Y axis) and 2)FISBA interferometr (X axis).

8 Pyramid Sensor sensitivity Signal amplitude measured in lab as a function of the tilt modulation showing an inversely proportional law. The wavefront error due to pure photon noise can be stimated using the sensitivity measurements. In particular considering a segment of 2.1 m 2, a 15 magnitude star and 30 s exposion, we found a residual differential piston error on the wavefront of 7.3 nm The wavefront error due to pure photon noise can be stimated using the sensitivity measurements. In particular considering a segment of 2.1 m 2, a 15 magnitude star and 30 s exposion, we found a residual differential piston error on the wavefront of 7.3 nm