GAP Optique Geneva University 1 Quantum Communication  With 1 photon: Q cryptography  With 2 photons: Q crypto, Bell tests, qutrits, plasmons  With.

Slides:



Advertisements
Similar presentations
Quantum Cryptography Post Tenebras Lux!
Advertisements

WP 3 WP 3 – Quantum Repeaters Časlav Brukner
Parametric Down-conversion and other single photons sources December 2009 Assaf Halevy Course # 77740, Dr. Hagai Eisenberg 1.
Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information.
Implementation of Practically Secure Quantum Bit Commitment Protocol Ariel Danan School of Physics Tel Aviv University September 2008.
Experimental work on entangled photon holes T.B. Pittman, S.M. Hendrickson, J. Liang, and J.D. Franson UMBC ICSSUR Olomouc, June 2009.
Quantum Coherent Control with Non-classical Light Department of Physics of Complex Systems The Weizmann Institute of Science Rehovot, Israel Yaron Bromberg,
Ilja Gerhardt QUANTUM OPTICS CQT GROUP Ilja Gerhardt, Matthew P. Peloso, Caleb Ho, Antía Lamas-Linares and Christian Kurtsiefer Entanglement-based Free.
GAP Optique Geneva University 1 Quantum Communication Nicolas Gisin  Quantum cryptography: BB84 and uncertainty relations Ekert and entanglement no cloning.
GAP Optique 1 Quantum Communication  Quantum cryptography: a beautiful idea!  Quantum cryptography on a “black-board”  Quantum cryptography below lake.
Technion – Israel Institute of Technology, Physics Department and Solid State Institute Entangled Photon Pairs from Semiconductor Quantum Dots Nikolay.
Economic Stimulus : Valorization of Single Photon Detectors and Quantum Key Distribution Systems Hugo Zbinden Group of Applied Physics (GAP), UNIGE NCCR.
Niels Bohr Institute Copenhagen University Quantum memory and teleportation with atomic ensembles Eugene Polzik.

Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Quantum Entanglement and Bell’s Inequalities Kristin M. Beck and Jacob E. Mainzer Demonstrating quantum entanglement of photons via the violation of Bell’s.

Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 5.
Single photon sources. Attenuated laser = Coherent state Laser Attenuator Approximate single photon source Mean number of photon per pulse.
Quantum Cryptography Marshall Roth March 9, 2007.
Cavity QED as a Deterministic Photon Source Gary Howell Feb. 9, 2007.
Future Challenges in Long-Distance Quantum Communication Jian-Wei Pan Hefei National Laboratory for Physical Sciences at Microscale, USTC and Physikalisches.
Deterministic teleportation of electrons in a quantum dot nanostructure Deics III, 28 February 2006 Richard de Visser David DiVincenzo (IBM, Yorktown Heights)
Introduction to Photonic Quantum Logic QUAMP Summer School SEPT 2006 J. G. Rarity University of Bristol EU FET:
Quantum Cryptography December, 3 rd 2007 Philippe LABOUCHERE Annika BEHRENS.
EECS 598 Fall ’01 Quantum Cryptography Presentation By George Mathew.
Experimental Quantum Teleportation Quantum systems for Information Technology Kambiz Behfar Phani Kumar.
GAP Optique Geneva University 1 Quantum Communications at telecom wavelengths Nicolas Gisin Hugo Zbinden Toni Acin, Claudio Bareiro, Sylvain Fasel, J.-D.
- Quantum Storage of Photonic Entanglement in Nd:Y 2 SiO 5 - Towards a complete AFC quantum memory in Eu:Y 2 SiO 5 Imam Usmani, Christoph Clausen, Félix.
Quantum computing with Rydberg atoms Klaus Mølmer Coherence school Pisa, September 2012.
Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.
QUANTUM TELEPORTATION
Security of practical quantum cryptography with heralded single photon sources Mikołaj Lasota 1, Rafał Demkowicz-Dobrzański 2, Konrad Banaszek 2 1 Nicolaus.
Quantum Cryptography Beyond the buzz Grégoire Ribordy CERN, May 3rd 2006.
Jian-Wei Pan Decoherence-free sub-space and quantum error-rejection Jian-Wei Pan Lecture Note 7.
A deterministic source of entangled photons David Vitali, Giacomo Ciaramicoli, and Paolo Tombesi Dip. di Matematica e Fisica and Unità INFM, Università.
Christine Muschik and J. Ignacio Cirac Entanglement generated by Dissipation Max-Planck-Institut für Quantenoptik Hanna Krauter, Kasper Jensen, Jonas Meyer.
The Road to Quantum Computing: Boson Sampling Nate Kinsey ECE 695 Quantum Photonics Spring 2014.
Trondheim 2003 NTNU Vadim Makarov Lecture in "Fiberkomponenter" course, November 13, 2003 Quantum Cryptography Kvantekryptering.
IIS 2004, CroatiaSeptember 22, 2004 Quantum Cryptography and Security of Information Systems 1 2
Purdue University Spring 2014 Prof. Yong P. Chen Lecture 16 (3/31/2014) Slide Introduction to Quantum Optics.
Information Processing by Single Particle Hybrid Entangled States Archan S. Majumdar S. N. Bose National Centre for Basic Sciences Kolkata, India Collaborators:
Trondheim 2002 NTNU Quantum Cryptography FoU NTNU Vadim Makarov and Dag R. Hjelme Institutt for fysikalsk elektronikk NTNU Norsk kryptoseminar,
Quantum Dense coding and Quantum Teleportation
Bell Measurements and Teleportation. Overview Entanglement Bell states and Bell measurements Limitations on Bell measurements using linear devices Teleportation.
Quantum Imaging with Undetected Photons
Copyright © 2006 Keio University Applications of an Entangled Quantum Internet Conference on Future Internet Technologies Seoul, Korea June 20, 2008 Rodney.
Bell tests with Photons Henry Clausen. Outline:  Bell‘s theorem  Photon Bell Test by Aspect  Loopholes  Photon Bell Test by Weihs  Outlook Photon.
Copenhagen interpretation Entanglement - qubits 2 quantum coins 2 spins ( spin “up” or spin “down”) Entangled state many qubits: Entangled state:
Quantum Entanglement and Distillation in Information Processing Shao-Ming Fei
Multiparticle Entangled States of the W- class, their Properties and Applications A. Rodichkina, A. Basharov, V. Gorbachev Laboratory for Quantum Information.
Uni-Heidelberg Physikalisches Insitut Jian-Wei Pan Multi-Particle Entanglement & It’s Application in Quantum Networks Jian-Wei Pan Lecture Note.
1 Conference key-agreement and secret sharing through noisy GHZ states Kai Chen and Hoi-Kwong Lo Center for Quantum Information and Quantum Control, Dept.
Quantum teleportation between light and matter
Sources, Memories, Detectors Ryan Camacho, Curtis Broadbent, Michael Pack, Praveen Vudya Setu, Greg Armstrong, Benjamin Dixon and John Howell University.
Carmen Porto Supervisor: Prof. Simone Cialdi Co-Supervisor: Prof. Matteo Paris PhD school of Physics.
QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Qudit Implementations with Energy-Time Entangled Photons 1 Bänz Bessire Quantum Optics Lab – The Stefanov Group.
Spontaneous Parametric Down Conversion and The Biphoton
QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Characterization and manipulation of frequency entangled qudits 1 Bänz Bessire Quantum Optics Lab – The Stefanov.
ENTANGLED BRIGHT SQUEEZED VACUUM
M. Stobińska1, F. Töppel2, P. Sekatski3,
ICNFP, Kolymbari, Crete, Greece August 28 – September 5, 2013
Optical qubits
Quantum Teleportation
Quantum Teleportation
Schrödinger’s Rainbow:
Quantum Information with Continuous Variables
INTERNATIONAL WORKSHOP ON QUANTUM INFORMATION
Experimental Quantum Teleportation*
Presentation transcript:

GAP Optique Geneva University 1 Quantum Communication  With 1 photon: Q cryptography  With 2 photons: Q crypto, Bell tests, qutrits, plasmons  With 3 photons: Q teleportation  With 4 photons: entanglement swapping  News from the industry forehead Nicolas Gisin Hugo Zbinden, Ivan Marcikic, Hugues de Riedmatten, Sylvain Fasel, Jeroen van Houwelingen, Rob Thew Group of Applied Physics, University of Geneva

GAP Optique Geneva University 2 Q communication in optical fibres  The transmission depends on the wavelength - Lower attenuation : 1310 nm (0.3 dB/km) and 1550 nm (0.2dB/km) (telecom wavelengths) Two problems : Losses and decoherence. How to minimize them ?  Time-bin coding with  Decoherence due to birefringence : Polarization Mode Dispersion photons at telecom wavelength

GAP Optique Geneva University 3 Time-bin qubits  qubit :  any qubit state can be created and measured in any basis variable coupler variable coupler 1 0   h AliceBob D 0 D 1 switch 1 0 State preparation Projective measurement W. Tittel & G. Weihs, Quant. Inf. Comput. 1, Number 2, 3 (2001)

GAP Optique Geneva University 4 B 0 A 0 1 B 1 A    Detectors & Coincidence   Time-bin entanglement PDC  Laser Variable coupler Robust against decoherence in optical fibers After 2x2km of optical fibers 2 km optical fibers V net =96%.Photon pair creation in a non-linear crystal.Parametric down-conversion (PDC).Energy and momentum conservation p =710nm s =1310nm i =1550nm R. Thew et al., Phys. Rev. A 66, (2002)

GAP Optique Geneva University 5 1-photon: Q crypto AliceBob km Results: (PRA 63,012309, 2001 and S. Fasel et al., EJPD 30, 143, 2004) CDC IF Asynchronous heralded single-photon source Time between a click at detector A and a click at detector B [# trigger signals] Number of events (normailzed) P(1 )=60% P(2 )=0.02% g (2) (0)= KHz (quant-ph/ )

GAP Optique Geneva University 6 2-photons: Bell test over 50 km Bob Alice Time arrival on A 1 Time arrival on B 1 = short path = long path Type I NLC Creating 1.3 & 1.55  m deterministic sepation with WDM coupler

GAP Optique Geneva University 7  Idea: verify from time to time the phase Stabilisation of the interferometers Every 100 s the phase is brought back to a given value

GAP Optique Geneva University 8 Bell test over 50 km  With phase control we can choose four different settings  = 0 ° or 90 ° and  = -45 ° or 45 °  Violation of Bell inequalities: Violation of Bell inequalities by more than 15  Marcikic et al., PRL, in press, quant-ph/

GAP Optique Geneva University 9 2-photons: Qutrit Entanglement

GAP Optique Geneva University 10 Bell Violation with qutrits I = / I(lhv) = 2 < I(2) = < I(3) = 2.872

GAP Optique Geneva University 11 2-photons: Plasmon assisted entanglement transfer In collaboration with Prof. Erni, Zürich  a short lived phenomenon like a plasmon can be coherently excited at two times that differ by much more than its lifetime. At a macroscopic level this would lead to a “Schrödinger cat” living at two epochs that differ by much more than a cat’s lifetime.

GAP Optique Geneva University 12 3 photons: Q teleportation & Q relays  EPR  Bell 2 bits U  J. D. Franson et al, PRA 66,052307,2002 Collins et al., quant-ph/

GAP Optique Geneva University 13 Q repeaters & relays * entanglement * Bell measurement.. QND measurement + Q memory * entanglement * Bell measurement. ?? REPEATER RELAY H. Briegel, W. Dür, J. I. Cirac and P. Zoller, Phys. Rev. Lett. 81, 5932 (1998) J. D. Franson et al, PRA 66,052307,2002; D. Collins et al., quant-ph/

GAP Optique Geneva University 14 2 km of optical fiber Alice Alice:creation of qubits to be teleported Alice 55 m Bob Bob:analysis of the teleported qubit, 55 m from Charlie Bob Charlie Charlie:the Bell measurement Charlie fs 710 nm Experimental setup creation of entangled qubits coincidence electronics & LBO RG WDM RG WDM Ge InGaAs LBO BS InGaAs f s l a s e r sync out 1. 3 m  1. 3 m  1. 5 m  1. 5 m  2km H. de Riedmaten et al., PRL 92, /4, 2004 I. Marcikic et al., Nature, 421, , 2003

GAP Optique Geneva University 15results Equatorial states Raw visibility : V raw = 55 ± 5 % = 77.5 ± 2.5 % = 78 ± 3% = 77 ± 3% North & south poles mean fidelity: F poles =77.5 ± 3 % 77.5 ±2.5 % Mean Fidelity » 67 % (no entanglement)

GAP Optique Geneva University 16 2 km of optical fiber Alice Alice:creation of qubits to be teleported Alice 55 m Bob Bob:analysis of the teleported qubit, 55 m from Charlie Bob Charlie Charlie:the Bell measurement Charlie fs 710 nm Experimental setup creation of entangled qubits coincidence electronics & LBO RG WDM RG WDM Ge InGaAs LBO BS InGaAs f s l a s e r sync out 1. 3 m  1. 3 m  1. 5 m  1. 5 m  2km H. de Riedmaten et al., PRL 92, /4, 2004 On the same spool ! See Halder et al quant-ph/

GAP Optique Geneva University 17 4-photons: Entanglement swapping Bell state measurement Entangled photons that never interacted EPR source

GAP Optique Geneva University 18 Sources of time-bin entangled photons The experiment Bell state measurement Entanglement analysis Actively stabilized interferometers  1km

GAP Optique Geneva University 19 In the experiment :Partial Bell state measurement Entanglement swapping Four Bell states involved in the experiment !

GAP Optique Geneva University 20 Superposition basis: results V = (80 ± 4) % F  90 % 78 hours of measurement !

GAP Optique Geneva University 21 Results: computational basis Mean Fidelity =

GAP Optique Geneva University 22 News from the industry forehead Yesterday, September 29, id Quantique, DeckPoint and the University of Geneva officially inaugurated the first data archive site secured with Quantum Cryptography.

GAP Optique Geneva University 23 Data archiving network secured by Quantum Crypto  10 km

GAP Optique Geneva University 24 Quantis: Quantum random numbers on demand ( 4 Mbit/s per module, up to 4 modules on one PC card 1 light source 1 beam splitter 2 photon counters in a few cm 3 (  4x5x1 cm 3 ) !!! www. idquantique.com

GAP Optique Geneva University 25 Few « qubit » Applications Photon-counting OTDR Coherent Q measurement of the degree of polarization: symbole plein: polarimètre symbole vide: projection sur  (-) DOP=1 DOP=0.74 DOP=0.34 DOP temps(s) J.Lightwave Tech, 2, 390, 2004 PRL 91, , 2003

GAP Optique Geneva University 26 Conclusions Where are the applications? Next September 29, id Quantique, DeskPoint and the University of Geneva will officially inaugurate the first data archive site secured with Quantum Cryptography.

GAP Optique Geneva University 27 Single Photon Sources 919 nm / 0.7 nm 650 nm / >50 nm 1550 nm / 7nm /  Quantum Dot NV High pump Low pump g (2) (0) [%] P 2 [%] P 1 [%] 76 MHz5.3 MHz803 kHz34 kHzNTNT Beveratos et. al., PRL 89, (2002) Vuckovic et. al., APL 82, 3596 (2003) Fasel et. al. in preparation

GAP Optique Geneva University 28 Size of the classical communication One proton in one cm 3 at a temperature of 300 K:  bits protons in one cm 3 at a temperature of 300 K  x 155  bits To be compared to today’s optical fiber communication in labs: 1 Tbyte x 1024 WDW channels x 1000 fibers  bits/sec.   1 hour !! bits

GAP Optique Geneva University 29 entangled time-bin qubit  variable coupler non-linear crystal B s A s l B l A depending on coupling ratio and phase , maximally and non-maximally entangled states can be create d R. Thew et al, PRA 66, , 2002 Extensions to entanglement in higher dimensions: - qutrits: R. Thew et al, quant-ph/ up to dimesnion 20: H. Deriedmatten et al, quant-ph/

GAP Optique Geneva University 30 Bell state measurement H. Weinfurter, Europhysics Letters 25, (1994) H. de Riedmatten et al., Phys. Rev. A 67, (2003) 1 2 A B