Non-Mesonic Weak Decays of 5 Λ He and 12 Λ C Hypernuclei formed by (  +,K + ) Reaction RIKEN H. Outa 22. Aug. 2006 FB18 (P28) for KEK-PS E462 / E508 collaborations.

Slides:



Advertisements
Similar presentations
Zijin Guo University of Hawaii (Representing BES Collaboration) Quarkonium Working Group ’04, IHEP Beijing October 13, 2004 Study of  c Decays at BES.
Advertisements

Invariant-mass spectroscopy of neutron halo nuclei Takashi Nakamura 中村隆司 Tokyo Institute of Technology 東京工業大学 中日 NP 06, Shanghai.
De Mori Francesca,Turin University and INFN DAFNE04 Frascati, June Very preliminary results of Non Mesonic Weak Decays in FINUDA De Mori Francesca.
Nonmesonic weak decay of 5 Λ He and 12 Λ C and the effect of FSI on its observables H. Bhang for KEK-PS SKS collaboration (Seoul National University) Dafne04.
The Contribution of the Three-Body Process in the Nonmesonic Weak Decay of Λ Hypernuclei H. Bhang (Seoul National University) For KEK-PS E508 Collaboration.
The Three-body Process in the Weak Interaction Observed in the Decay of Λ hypernuclei H. Bhang for KEK-PS SKS collaboration (Seoul National University)
HYPERNUCLEAR PHYSICS USING CEBAF BEAM PAST AND FUTURE Liguang Tang Hampton University/JLAB 4 th Workshop on Hadron Physics In China and Opportunities with.
N*(2007) observed at LNS Sendai H. Shimizu Laboratory of Nuclear Science Tohoku University Sendai NSTAR2007, Sep.5-8, 2007, Bonn 1670.
Study of B  D S ( * )  D*  *   and D ( * ) (4  )   at CLEO Jianchun Wang Syracuse University Representing The CLEO Collaboration DPF 2000 Aug 9.
A Reanalysis of the Reported Observation of the ΛΛ H Hypernucleus S. D. Randeniya & E. V. Hungerford University of Houston USA October , Mainz,
Decay asymmetry in non-mesonic weak decay of light  hypernuclei T.Maruta KEK, JSPS fellow Oct./13/2006 Univ. KEK-PS E462/E508 collaborations.
Weak decay of 5 Λ He and 12 Λ C : experimental results RIKEN H. Outa 10. Oct HYP2006(Mainz) for KEK-PS E462 / E508 collaborations Osaka Univ. a,
The Quenching of Nucleon Yields in the Nonmesonic Weak Decay of Λ Hypernuclei and the Three-body Weak Interaction Process. H. Bhang (Seoul National University)
Search for  + via K + p   + X reaction with high-resolution spectrometer system Kyoto University S. Dairaku for E559 collaboration.
Oct. 13 th ray spectroscopy study of and Yue Ma Department of Physics Tohoku University.
S.N.Nakamura, Tohoku Univ. JLab HallC Meeting 22/Jan/2010, JLab.
J-PARC: Where is it? J-PARC (Japan Proton Accelerator Research Complex) Tokai, Japan 50 GeV Synchrotron (15  A) 400 MeV Linac (350m) 3 GeV Synchrotron.
Coherent  -meson Photo-production from Deuterons Near Threshold Wen-Chen Chang Wen-Chen Chang for LEPS collaboration Institute of Physics, Academia Sinica,
HYP03 Future Hypernuclear Program at Jlab Hall C Satoshi N. Nakamura Tohoku University 18 th Oct 2003, JLab.
T.C. Jude D.I. Glazier, D.P. Watts The University of Edinburgh Strangeness Photoproduction: Polarisation Transfer & Cross-Section Measurements.
Possibility for hypernuclei including pentaquark,   Kiyoshi Tanida (Seoul National Univ.) 19 Sep 2009 High resolution search for   &
Moriond QCD, Mar., 2007, S.Uehara 1 New Results on Two-Photon Physics from Belle S.Uehara (KEK) for the Belle Collaboration Rencontres de Moriond, QCD.
P10-2: Exclusive Study on the  N Weak Interaction in A=4  -Hypernuclei (update from P10) S. Ajimura (Osaka Univ.) Osaka-U, KEK, OsakaEC-U, RIKEN, Seoul-U,
Brad Sawatzky / JLAB Acknowledgements to Liguang Tang Hampton University/JLAB MESON 2012 Krakow, Poland.
Study of hadron properties in cold nuclear matter with HADES Pavel Tlustý, Nuclear Physics Institute, Řež, Czech Republic for the HADES Collaboration ,
1 Hypernuclear spectroscopy up to medium mass region through the (e,e’K + ) reaction in JLab Mizuki Sumihama For HKS collaboration Department of Physics.
Omega meson in nucleus, experimental study K. Ozawa (Univ. of Tokyo)
Motivation. Why study ground state hyperon electroproduction? CLAS detector and analysis. Analysis results. Current status and future work. M. Gabrielyan.
JLab Hypernuclear Workshop 27 th May 2014 Satoshi N Nakamura, Tohoku University HKS HES Results from Hall-C.
Osamu Hashimoto Department of Physics Tohoku University APCTP Workshop on Strangeness Nuclear Physics (SNP'99) February 19-22, 1999 Reaction spectroscopy.
V.L. Kashevarov. Crystal Collaboration Meeting, Mainz, September 2008 Photoproduction of    on protons ► Introduction ► Data analysis.
Production of Double Strangeness Hypernuclei in 12 C(K -,K + ) Reaction at 1.67 GeV/c Choi Bong Hyuk Pusan National University For the E522 collaboration.
Cross section of elementally process [5] The  -ray spectroscopy of light hypernuclei at J-PARC (E13) K. Shirotori for the Hyperball-J collaboration Department.
Recent Studies of Hypernuclei Formation with Electron Beams at MAMI Patrick Achenbach U Mainz Sept. 2o13.
Víctor M. Castillo-Vallejo 1,2, Virendra Gupta 1, Julián Félix 2 1 Cinvestav-IPN, Unidad Mérida 2 Instituto de Física, Universidad de Guanajuato 2 Instituto.
Study of Neutron-Rich  Hypernuclei Tomokazu FUKUDA Osaka Electro-Communication University 2013/09/091EFB 22.
JOINT WORKSHOP JSPS CORE TO CORE SEMINAR and EU SPHERE NETWORK MEETING September 4 -6, 2010 Prague, Czech Republic Weak Decay Studies with FINUDA Stefania.
MC Check of Analysis Framework and Decay Asymmetry of  W.C. Chang 11/12/2005 LEPS Collaboration Meeting in Taiwan.
Λ and Σ photoproduction on the neutron Pawel Nadel-Turonski The George Washington University for the CLAS Collaboration.
J-PARC Day-1 実験の状況・ 実験家から理論屋への要望 T.Takahashi (KEK) Contents 1. Aproved Exp. on J-PARC 2. How to produce S=-2 Systems 3. E05: (K-,K+) Spectroscopy.
Hypernuclear Physics at J-PARC H. Bhang (Seoul National University) APCTP ISBB workshop APCTP, Nov , 2008 I. J-PARC II. Hypernuclear Experiments.
A search for strange tribaryonic states in the reaction Heejoong Yim Seoul National University For KEK-PS E549 collaboration.
Magnetic Moment of a  in a Nucleus H. Tamura Tohoku University 1. Introduction 2.  -ray spectroscopy of  hypernuclei and spin-flip B(M1) 3. Experiments.
Yudai Ichikawa (Kyoto University/JAEA) 2013/07/26 RCNP 研究究会「核子・ハイペロン多体系におけるクラスター現 象」 1 J-PARC における d(π +, K + ) 反応を 用いた K 中間子原子核の探索.
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
Search for double-kaonic nuclear cluster (K - K - pp) using p+p reaction F.Sakuma, RIKEN discussion is based on Proc. Jpn. Acad., Ser. B, 87 (2011) ,
Jan. 18, 2008 Hall C Meeting L. Yuan/Hampton U.. Outline HKS experimental goals HKS experimental setup Issues on spectrometer system calibration Calibration.
Exotic baryon resonances in the chiral dynamics Tetsuo Hyodo a a RCNP, Osaka b ECT* c IFIC, Valencia d Barcelona Univ. 2003, December 9th A.Hosaka a, D.
A search for strange tribaryonic states in the reaction H. Yim for KEK-E549 collaboration H. Bhang, J. Chiba, S. Choi, Y. Fukuda, T. Hanaki, R. S. Hayano,
Polarisation transfer in hyperon photoproduction near threshold Tom Jude D I Glazier, D P Watts The University of Edinburgh.
A High Statistics Study of the Decay M. Fujikawa for the Belle Collaboration Outline 1.Introduction 2.Experiment Belle detector 3.Analysis Event selection.
J-PARC でのシグマ陽子 散乱実験の提案 Koji Miwa Tohoku Univ.. Contents Physics Motivation of YN scattering Understanding Baryon-Baryon interaction SU(3) framework Nature.
Structure of light Λ hypernuclei Emiko Hiyama (RIKEN)
J-PARC における 4  He の生成と構造の研究 東北大学 大学院理学研究科 白鳥昂太郎 for the Hyperball-J Collaboration.
Search for neutron-rich hypernuclei in FINUDA: preliminary results presented by M. Palomba 1 for the FINUDA Collaboration 1 INFN and Dipartimento di Fisica,
Direct Measurement of Lifetime of Heavy Hypernuclei Using Photon Beam with CLAS and Fission Fragment Detector Liguang Tang Hampton University / JLAB Proposal.
E. Robutti Enrico Robutti I.N.F.N. Genova HEP 2003 Europhysics Conference July 17-23, Aachen, Germany Recent BABAR results in Charmonium and Charm Spectroscopy.
1 Recent Results on J/  Decays Shuangshi FANG Representing BES Collaboration Institute of High Energy Physics, CAS International Conference on QCD and.
Coincidence Measurement of the Weak Decay of 12 Λ C Hypernucleus and the Three-body Weak Interaction Process H. Bhang (Seoul National University) J-PARC.
Status of the 3-Body NMWD study and E18 H. Bhang (Seoul National University) KJ-PARC WS SNU, Sep , 2011 Outlines I. E18 Proposal status; 2 nd stage.
QCHS 2010 Lei Zhang1 Lei Zhang (on behalf of BESIII Collaboration) Physics School of Nanjing University Recent.
Search for the K  pp bound state via the in-flight 3 He(K ,n) reaction MESON2014 Yuta Sada for the E15 collaboration RCNP, Osaka Univ & RIKEN 1.
Search for a nuclear kaon bound state K - pp at the J-PARC K1.8 beam line. Dep. of physics, Kyoto University / JAEA Y. Ichikawa for E27 Collaboration Korea-Japan.
HADRON 2009, FloridaAnar Rustamov, GSI Darmstadt, Germany 1 Inclusive meson production at 3.5 GeV pp collisions with the HADES spectrometer Anar Rustamov.
2011/9/221 Koji Miwa Tohoku Univ. For the J-PARC E40 Collaboration Sigma proton scattering experiment E40.
Bryan Moffit Hall A Collaboration Meeting Studying Short Range Correlations in Nuclei at the Repulsive Core Limit via the Triple Coincidence (e,e’pN) Reaction.
First ExclusiveMeasurement of the Non-Mesonic Weak Deacay of 12  C First Exclusive Measurement of the Non-Mesonic Weak Deacay of 12  C Seoul national.
Λハイパー核の弱崩壊実験 S. Ajimura (RCNP) Nonmesonic weak decay of hypernuclei
Hypernuclear Spectroscopy with Electron Beams
Hypernuclear weak decay experiments at J-PARC
Presentation transcript:

Non-Mesonic Weak Decays of 5 Λ He and 12 Λ C Hypernuclei formed by (  +,K + ) Reaction RIKEN H. Outa 22. Aug FB18 (P28) for KEK-PS E462 / E508 collaborations Osaka Univ. a, KEK b, GSI c, Seoul Univ. d, Tohoku Univ. e, Univ.of Tokyo f, Tokyo Inst. Tech. g, KRISS h, RIKEN i S. Ajimura a, K.Aoki b, A.Banu c, H. C. Bhang d, T. Fukuda c,O. Hashimoto e, J. I. Hwang d, S. Kameoka e, B. H. Kang d, E. H. Kim d, J. H. Kim d, M. J. Kim d, T. Maruta f, Y. Miura e, Y. Miyake a, T. Nagae b, M. Nakamura f, S. N. Nakamura e,H. Noumi b, S. Okada g, Y. Okayasu e, H. Outa b, H. Park h,P. K. Saha b, Y. Sato b, M. Sekimoto b, T. Takahashi e,H. Tamura e, K. Tanida i, A. Toyoda b, K. Tsukada e,T. Watanabe e, H. J. Yim d Γ(Λn→nn)/Γ(Λp→np) ratio A= 5 B.H. Kang et al. PRL 96 (2006) A=12 M.J. Kim et al. nucl-ex/ : PLB in press n/p spectra from A=5,12 S. Okada et al. PLB 597 (2004) Asymmetry of proton from polarized hypernuclei T. Maruta et al. nucl-ex/ Mesonic & non-mesonic decay widths ⇒ may be omitted in this talk S. Kameoka et al. Nucl. Phys. A754 (2005) 173c-177c S. Okada et al. Nucl. Phys. A754 (2005) 178c-183c

Weak decay of  hypernucleus Γ π _ Γ π _ (  → p + π - ) Γ π 0 Γ π 0 (  → n + π 0 ) Γ p Γ p (  +“ p ”→ n + p ) Γ n Γ n (  +“ n ”→ n + n ) Γ 2N (ΛNN →NNN) Mesonic q ~ 100MeV/c Non-Mesonic (NMWD) q ~ 400MeV/c 1/  HY =Γ tot ΓmΓm Γ nm Weak decay mode of  hypernucleus  weak decay in free space  → p + π - : 63.9±0.5 %  → n + π 0 : 35.8±0.5 %   = 263.2±2.0 ps → Well known. Study of the mechanism of baryon-baryon weak interaction

[1]Γ(Λn→nn) /Γ(Λp→np) Ratio - Long standing puzzle solved

 n /  p Theoretical N N N Λ Direct Quark mechanism Meson Exchange mechanism Λ N NN π,K,η,ρ,ω,K * 0.93±0.55 (Szymanski et al.) Exp. (for 5  He)  n /  p ratio : The most important observable used to study the isospin structure of the NMWD.  n /  p ratio puzzle Γ p Γ p (Λ+“ p ”→ n + p ) Γ n Γ n (Λ+“ n ”→ n + n )  n /  p ~ 0.1 Λ N NN W S π One Pion Exchange (OPE) Simple theoretical model Tensor-dominant  requires the final Nn pair to have isospin 0. strong tenser coupling (  L=2,  S=2) → dominant term 3 S 1 → 3 D 1 (amplitude “d”)

n n n p p p p p n n n p rescattering Final state interaction (FSI) effect Experimental difficulties in the nucleon measurement Difficulty in detecting neutrons.  There is no experiment to observe both of the protons and neutrons simultaneously with high statistics. Final state interaction (FSI) effect  not well established Distinguish between the FSI and ”  NN  nNN” process  NN→NNN (2N-induced process) Λ N N N W π N N (One of the theoretical model)

Expected single nucleon spectrum n p n p n  N→nN n n n p p p p p n n n p  NN→nNN FSI re-scattering n n n p p p p p n n n p counts Q/2 Energy spectra (image) Energy distribute low energy region up to Q/2 broad peak around Q/2 continuous distribution

n p n p  n n p n p n p n p n Coincidence NMWD The present experiment KEK-PS E462/E508 Angular correlation 1) Angular correlation ( back-to-back, cos  <-0.8 ) Energy correlation 2) Energy correlation ( Q ~ E(N1)+E(N2) ~ 152MeV ) Angular correlation 1) Angular correlation ( back-to-back, cos  <-0.8 ) Energy correlation 2) Energy correlation ( Q ~ E(N1)+E(N2) ~ 152MeV ) NMWD : ΛN→NN * cosθ< - 0.8 * E(N1)+E(N2) cut Direct measurement of the  n /  p ratio Select ΛN→NN events w/o FSI effect & ΛNN→NNN. Select light hypernuclei to minimize FSI effect, 5  He and 12  C

π+π+ K+K+ Target: 6 Li, 12 C Excitation-energy spectra for 6  Li and 12  C 6.2×10 4 events 4.6×10 4 events decay counter 5  He 6  Li (g.s.)  5  He + p The ground state of 6  Li is above the threshold of 5  He + p. 5  He

Charged particle : ・ TOF (T2→T3) ・ tracking ( PDC ) Neutral particle : ・ TOF (target→NT) ・ T3 VETO p n π K Decay counter Setup (KEK-PS K6 & SKS) Decay arm N: 20cm×100cm×5cm T3: 10cm×100cm×2cm T2: 4cm×16cm×0.6cm Solid angle: 26% 9(T)+9(B)+8(S)% n p polarization axis

Charged particles from 5  He PID function Charged PID Neutral PID Constant background very small Neutron energy resolution →  7MeV(FWHM) at 75MeV 1 /  spectra Neutral particles from 12  C Good  n separation Good  p d separation Decay particle identification

The g.s. peak is clearly seen in all spectra with coincident decay particles. previous experiment at BNL inclusive w/ proton w/ π ± w/ neutron w/ γ Excitation spectra w/ coincident decay particles for 5  He S. Kameoka et al. Nucl. Phys. A754 (2005) S. Okada et al. Nucl. Phys. A754 (2005)

np- & nn- angular distribution ( 5 Λ He)  n  p  nn /  np = 0.45±0.11±0.03 systematic error is mainly come from efficiency for neutron (6%) + acceptance(3%) Back-to-back

Coincidence Measurement (A=12) cos n + p n + n p + p E n + E p E n + E n E p + E p MeV  NN Counts 12 Λ C  n  p  nn /  np = 0.50±0.13±0.05

 n /  p 0.93±0.55 (Szymanski et al.) for 5  He Exp. Λ N NN W S π One Pion Exchange (OPE) Theo. N N N Λ Direct Quark mechanism Meson Exchange mechanism Λ N NN π,K,η,ρ,ω…  n /  p ratio Previous exp. (at BNL) N nn / N np ( 5  He)= 0.45±0.11±  He (E462) Kang et al. PRL 96 (2006) Γ n / Γ p ( 12  C)= 0.50±0.13±  C (E508) Kim et al. nucl-ex/ PLB in press

[2] Asymmetry of proton emission from polarized hypernuclei

Asymmetry measurement of decay proton N(  ) = N 0 (1 + Acos  )  Asymmetry Asymmetry : Volume of the asymmetric emission from NMWD A = (R - 1) (R + 1) R = N(-)N(-) N(+)N(+), Asymmetry parameter = N 0 (1 +  Pcos  ) Difference of acceptance & efficiency is canceled out ! R = N(  + (-  ))×N(  - (+  )) N(  + (+  ))×N(  - (-  )) 1/2  K >0 ++ K+K+  /p KK    K <0 ++ K+K+ /p/p KK   P P

Initial stateFinal stateAmplitudeIsospinParity 1S01S0 1S01S0 a1No 3P03P0 b1Yes 3S13S1 3S13S1 c0No 3D13D1 d0 1P11P1 e0Yes 3P13P1 f1 If assuming initial S state We can know the interference between states with different Isospin and Parity. (Applying  =1/2 rule) Importance of α nm measurement

 NM for 5 Λ He NMWD A=PA=P A  :Asymmetry of Pion    Asymmetry Parameter of Pion (= - 0.642±0.013) P   Polarization of Lambda  :Attenuation factor ・ Polarization of  ・ Asymmetry Parameter of Proton A p =  NM P   p Estimated from mesonic decay We can calculate  NM without theoretical help ! p

Polarization of  ー : E462 ー : E278 : Motoba et al. NPA577 (1994) 293c NOTE: Calculation by Motoba et al. considers excited state at E=4.5 MeV

Theory: ~ Asymmetry parameter of 5 Λ He   NM =0.08± p statistical  contami Nucl.Phys.A754 (2005) nucl-ex/ ; submitted to PRL Instrumental Asymmetry <0.003

Asymmetry parameter of 12 C, 11 B   NM =-0.14± p statistical  contami E160 : - 0.9±0.3

Comparison with recent calculations OPE  +K  +K+DQ OME  +K,OME can reproduce  n /  p ratio but predict large negative  NM  +K+   +K+  +DQ  n /  p and  NM can be reproduced only by  +K+  +DQ model Sasaki et al. PRC71 (2005) (1) Large b( 1 S 0 → 3 P 0 ) and f( 3 S 0 → 3 P 1 ) amplitude (2) Violation of ΔI=1/2 rule considered

[3] Precise measurement of π-mesonic / non-mesonic decay widths - Test of Λ-nucleus potential

Kameoka et al., HYP03 proc NPA754 (2005) Lifetime measurements with (π +,K + ) reaction & SKS 47

Other Results-1:   0 and Λ-α potential   He   0 /   = 0.201±0.011 Lifetime : ps (E462) -10 HYP03 proceesings Nucl. Phys. A754 (2005)

Other results-2: A dependence of Γ NM HYP03 proceedings Nucl. Phys. A754

Summary   N→NN was directly observed for the first time !! 5 Λ He: Γ n / Γ p ratio ~ N nn / N np = 0.45±0.11±0.03 Kang et al. PRL 96 (2006) Λ C: Γ n / Γ p ratio ~ 0.50±0.13±0.05 Kim et al. PLB, in press ◆ Asymmetry parameter measured with improved accuracy !! 5 Λ He : 11 Λ B and 12 Λ C : Maruta et al. nucl-ex/ ; thesis ◆ Mesonic and Non-mesonic decay widths are precisely measured - Test of Λ-nucleus potential  NM =0.08± p [1] Importance of shorter-range mechanism OPE ⇒ Heavy meson & DQ exchange [2] Significant contribution from ΛN initial spin-singlet initial state - σ-meson exchange ? / Violation of ΔI=1/2 rule ?  NM = - 0.14± p -0.00

Spare OHP

ΛNN→NNN consideration Λ n n p W π-π- p n Λ n n n W π0π0 p p 4 1 Seen as…. n n p p n n Λn→nn like Λp→np like Garbarino

experimentaldata theoreticalcalc. Comparison with theoretical calc. for angular correlation Garbarino’s calc. assuming Gn/Gp = 0.46 (for 5  He ), 0.34 (for 12  C ) considered 2N-induced( ~ 20%), FSI 5  He (E462) 12  C (E508) n+p coincidence n+n coincidence n+p n+n cos  n+p coincidence n+n coincidence n+p n+n p+p Pair number /NMWD /NMWD Pair number /NMWD /NMWD n+p coincidence n+n coincidence p+p coincidence n+p coincidence n+n coincidence p+p coincidence Phys. Rev. Lett. 91 (2003)

E462   - /   of   He  - branching ratio  0 branching ratio Lifetime Other results  - decay width for 5  He Errors were much improved !!  0 decay width for 5  He and 12  C HYP2003 proceedings Nucl. Phys. A754 (2005)

Γπ: test of Λ-nucleus potential Λnucleus YN interaction attraction ~ repulsion Repusive core is the common feature of Y-nucleus potential

Kameoka et al., HYP03 proc nucl-ex/ Very recent measurements with (π+,K+) reaction & SKS 47 Preliminary

Null asymmetry test ( ,pX) reaction : Only Strong Interaction Asymmetry = 0 expected Instrumental Asymmetry < 0.3% p or 

np coincidence analysis n p n p  n n p n p Coincidence NMWD np back-to-back event  NM =0.31±0.22 p

One and only(?) solution  + K +  + DQ Sasaki et al. PRC71 (2005)  N NN W S ,K,,K,  b( 1 S 0 → 3 P 0 ) と f( 3 S 0 → 3 P 1 ) amplitude に影響を与える   I = 3/2 が大きく寄与する  今回  n /  p ratio と  NM を高精度で測定したことにより、 こういう反応機構の必要性が認識された。 p

Angular correlation Energy sum n + p n + n estimated contamination from π - absorption Coincidence analysis ( 5 Λ He) Q-Value ~153MeV cos θ <- event 30 event (1.34) (4.38)

 n /  p estimation from Coincidence Measurement

Coincidence Measurement(E462/E508) Pair numbers/NMWD Estimated contamination from Energy sum distribution n + p n + n

Before subtraction After subtraction Uniform components subtraction

FSI consideration using pp-pairs r n,p r n,p fraction ratio of the neutron and proton induced channels. f n,p f n,p is reduction factor due to FSI. g n,p g n,p is cross over influx of neutron(proton) from proton(neutron) due to FSI. p,q,q’ p,q,q’ are angular acceptance factor.,,, N np (bb) N nn (bb) N pp (bb) Before FSI correction 4%

Systematic error calculation 1)Intentionally add 2 pp events in -0.8<cos  <-0.7 2) 3)Uniform b.g. level for different angular regions:6.6%

Neutron Efficiency Correction

Production of Polarized Hypernuclei E462/E508 experiment 1.05GeV/c  + beam is injected. Distribution of  polarization in the n(  +,K + )  reaction 2o2o 15 o K + scattering angle(  K ) 1.05GeV/c  + In large scattering angle,  is much polarized. P ++ K+K+  /p KK  

6 Li Hypernuclear mass spectra 6 Li +  + →  6 Li + K +  6 Li →  5 He + p 5  He 6  Li 5 Li 0MeV 8.3MeV 18.3MeV ( P n -1,S  ) ( P n -1,P  ) ( S n -1,S  ) p decay  decay inclusive  coin p coin 5.2×10 4 events 3.2×10 3 events 1.6×10 3 events 

Instrumental Asymmetry ( ,pC) reaction : Only Strong Interaction Asymmetry = 0 expected Instrumental Asymmetry < 0.3%

N n / N p Ratio Γ n Γ n (Λ+“ n ”→ n + n ) Γ p Γ p (Λ+“ p ”→ n + p ) If Γ n / Γ p = 1 → N n / N p = 3 If Γ n / Γ p = 0.5→ N n / N p = 2 If Γ n / Γ p = 0→ N n / N p = 1 Naive estimation (without considering FSI and ΛNN→NNN) To avoid suffering from FSI effect & ΛNN→NNN, High energy threshold Γ n :Γ p N n N p 1 : 1 … 3 : 1 1 : 2 … 2 : 1 0 : 1 … 1 : 1 N n / N p = 2×  n /  p + 1

Neutron and Proton energy spectra of 5  He and 12  C N n / N p (E>60MeV) ~ 2.00±0.09±0.14 N n / N p (60<E<110MeV) ~ 2.17±0.15±  He → n +  : Q ~ 135MeV (rate : 0.049±0.01   -) 135MeV apply upper energy limit of 110MeV ! apply a simple relation  n /  p = (N n / N p - 1) / 2   n /  p ~ 0.5 To avoid suffering from FSI effect & ΛNN→NNN, High energy threshold Corrected proton energy loss inside the target !! (submitted PLB. nucl-ex/ )

inclusive w/ proton w/ pion w/ neutron w/ gamma Excitation spectra w/ coincident decay particles for 12  C

Spin / isospin dependence p p n Λ n n p Λ p p n n Λ Non-mesonic weak decay of 4  He and 4  H 4 He (K -,  - ) 4  He or 4 He (  +,K + ) 4  He  n+n back-to-back 4 He (K -,  0 ) 4  H  p+n back-to-back (  0 spectrometer ) see S.Ajimura : J-PARC LOI 21 To J-PARC R NS … N :  n  nn,  p  np S : spin = 0 or 1  nm ( 4  H) = ( 3R n1 + R n0 + 2R p0 ) ×  4 / 6  nm ( 4  He) = ( 2R n0 + 3R p1 + R p0 ) ×  4 / 6  nm ( 5  He) = ( 3R n1 + R n0 + 3R p1 + R p0 ) ×  5 / 8  Need one-order higher statistics.  J-PARC

π+π+ K+K+ decay counter K6/SKS setup

Identification of hypernuclear formation K+K+  T1 target Z-vertex Mass Z

Neutral decay particle ID Good  n separation Good S/N ratio ( ~ 30) ( previous exp. S/N ratio ( 5  He) ~ 1 )  ~ 30 times (for 5  He) higher than previous exp. High statistics ( ~ 5000 neutrons)  ~ 200 times (for 5  He) ~ 30 times (for 12  C) higher than previous exp. 5MeV< E n < 150MeV Constant background very small Neutron energy resolution (estimated from  width) →  7MeV(FWHM) at 75MeV (TOF spectra) 1 /  spectra Neutral particles from 12  C

Charged particles from 5  He derived from dE/dx (at T2) Total energy deposit (sequentially fired counters (T2,T3,T4).) TOF (between T2 and T3) PID function Deuterons were separated from the protons. (for the first time!) Charged decay particle ID Gaussian fit (±2  cut)

Non-mesonic weak decay strong tenser coupling (  L=2,  S=2) → dominant term 3 S 1 → 3 D 1 (amplitude “d”)  + N→ N + N  + p → n + p :  p = a 2 +b 2 +c 2 +d 2 +e 2 +f 2  + n → n + n :  n = a 2 +b 2 +f 2 OPE :  n /  p ~ 0.1 Λ N NN W S π One Pion Exchange (OPE) model  n /  p ratio : The most important observable to study the isospin structure of the NMWD. Exp. :  n /  p ~ 1  n /  p ratio puzzle Simple theoretical model with large error

Mass number dependence of neutron energy spectra ( A=5,12,89 ) ( previous experiment ) As the mass number become lager, the number of neutron become lager in the low energy part, and smaller in the high energy part. Q / 2 = 76 MeV No peaking at Q / 2 (76MeV) even 5 Λ He suggested larger contribution of ΛNN→NNN or FSI than theoretical prediction. Theoretical calc. 5 Λ He w/ FSI Q/2

 -nucleus overlap for 5  He   0 /   = 0.201±0.011 (   He)   nm /   = 0.395±0.016 (   He) Γtotal ( 56 Λ Fe) ~ Γnm(A→∞) ~ 1.2Γ Λ ( E307 ) Γnm ( 5 Λ He) = 0.4Γ Λ ( Present) 1/3 of Λ is inside α Both results are consistent, preferred larger overlap than YNG prediction. 5 Λ He (ORG) ~ 40% 5 Λ He (YNG) ~ 20% 1/3 of Λ is inside α     0 /   locates in between ORG and YNG.