Chem 59-553 Patterson Methods In 1935, Patterson showed that the unknown phase information in the equation for electron density:  (xyz) = 1/V ∑ h ∑ k.

Slides:



Advertisements
Similar presentations
Review Chapter 4 Sections 1-6.
Advertisements

Intensities Learning Outcomes By the end of this section you should: understand the factors that contribute to diffraction know and be able to use the.
Phasing Goal is to calculate phases using isomorphous and anomalous differences from PCMBS and GdCl3 derivatives --MIRAS. How many phasing triangles will.
M 1 and M 2 – Masses of the two objects [kg] G – Universal gravitational constant G = 6.67x N m 2 /kg 2 or G = 3.439x10 -8 ft 4 /(lb s 4 ) r – distance.
Introduction to protein x-ray crystallography. Electromagnetic waves E- electromagnetic field strength A- amplitude  - angular velocity - frequency.
Planes in Lattices and Miller Indices
EEE539 Solid State Electronics
Wigner-Seitz Cell The Wigner–Seitz cell around a lattice point is defined as the locus of points in space that are closer to that lattice point than to.
Chem Single Crystals For single crystals, we see the individual reciprocal lattice points projected onto the detector and we can determine the values.
Expression of d-dpacing in lattice parameters
A Brief Description of the Crystallographic Experiment
APPLICATIONS OF DIFFERENTIATION 4. So far, we have been concerned with some particular aspects of curve sketching:  Domain, range, and symmetry (Chapter.
Fourier transform. Fourier transform Fourier transform.
8-1 Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall Chapter 8 Confidence Interval Estimation Statistics for Managers using Microsoft.
Copyright ©2011 Pearson Education 8-1 Chapter 8 Confidence Interval Estimation Statistics for Managers using Microsoft Excel 6 th Global Edition.
The Effects of Symmetry in Real and Reciprocal Space Sven Hovmöller, Stockholm Univertsity Mirror symmetry 4-fold symmetry.
PH0101 UNIT 4 LECTURE 3 CRYSTAL SYMMETRY CENTRE OF SYMMETRY
CHE (Structural Inorganic Chemistry) X-ray Diffraction & Crystallography lecture 2 Dr Rob Jackson LJ1.16,
Miller Indices And X-ray diffraction
1 Statistical Analysis - Graphical Techniques Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering EMIS 7370/5370 STAT 5340 : PROBABILITY AND.
Chem Systematic Absences The presence of translational symmetry elements and centering in the real lattice causes some series of reflections to.
Sullivan – Fundamentals of Statistics – 2 nd Edition – Chapter 9 Section 1 – Slide 1 of 39 Chapter 9 Section 1 The Logic in Constructing Confidence Intervals.
Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc. Chap 8-1 Chapter 8 Confidence Interval Estimation Basic Business Statistics 11 th Edition.
Confidence Interval Estimation
Chap 8-1 Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall Chapter 8 Confidence Interval Estimation Business Statistics: A First Course.
Patterson Space and Heavy Atom Isomorphous Replacement
Ch 9 pages Lecture 23 – The Hydrogen Atom.
Chem Lattices By definition, crystals are periodic in three dimensions and the X-ray diffraction experiment must be understood in the context of.
Statistics for Managers Using Microsoft Excel, 5e © 2008 Pearson Prentice-Hall, Inc.Chap 8-1 Statistics for Managers Using Microsoft® Excel 5th Edition.
Essentials of College Physics --Serway/Vuille
The Examination of Residuals. Examination of Residuals The fitting of models to data is done using an iterative approach. The first step is to fit a simple.
Chem One of the most important aspects of the data reporting process (i.e. publication or presentation) is the graphical presentation of your results.
Chem Structure Factors Until now, we have only typically considered reflections arising from planes in a hypothetical lattice containing one atom.
Lesson 22 SIR2011 Patterson Theory DIRDIF Patty Solve your structures.
Phasing Today’s goal is to calculate phases (  p ) for proteinase K using PCMBS and EuCl 3 (MIRAS method). What experimental data do we need? 1) from.
Crystallographic Points, Directions, and Planes. ISSUES TO ADDRESS... How to define points, directions, planes, as well as linear, planar, and volume densities.
1. Diffraction intensity 2. Patterson map Lecture
Crystallography and Diffraction
Interference in Thin Films, final
Page 1 X-ray crystallography: "molecular photography" Object Irradiate Scattering lens Combination Image Need wavelengths smaller than or on the order.
Methods in Chemistry III – Part 1 Modul M.Che.1101 WS 2010/11 – 8 Modern Methods of Inorganic Chemistry Mi 10:15-12:00, Hörsaal II George Sheldrick
Lesson 13 How the reciprocal cell appears in reciprocal space. How the non-translational symmetry elements appear in real space How translational symmetry.
Normal Modes of Vibration One dimensional model # 1: The Monatomic Chain Consider a Monatomic Chain of Identical Atoms with nearest-neighbor, “Hooke’s.
Chap 8-1 Chapter 8 Confidence Interval Estimation Statistics for Managers Using Microsoft Excel 7 th Edition, Global Edition Copyright ©2014 Pearson Education.
Chapter 1 Introduction. Theories and Experiments The goal of physics is to develop theories based on experiments A theory is a “guess,” expressed mathematically,
Protein Structure Determination Lecture 4 -- Bragg’s Law and the Fourier Transform.
Calculation of Structure Factors
Absolute Configuration Types of space groups Non-centrosymmetric Determining Absolute Configuration.
Before Beginning – Must copy over the p4p file – Enter../xl.p4p. – Enter../xl.hkl. – Do ls to see the files are there – Since the.p4p file has been created.
Interpreting difference Patterson Maps in Lab this week! Calculate an isomorphous difference Patterson Map (native-heavy atom) for each derivative data.
Sampling Design and Analysis MTH 494 Lecture-21 Ossam Chohan Assistant Professor CIIT Abbottabad.
CHAPTER 2.3 PROBABILITY DISTRIBUTIONS. 2.3 GAUSSIAN OR NORMAL ERROR DISTRIBUTION  The Gaussian distribution is an approximation to the binomial distribution.
1 Copyright © Cengage Learning. All rights reserved. 6. The Trigonometric Functions Graphs of Trigonometric Functions.
Methods in Chemistry III – Part 1 Modul M.Che.1101 WS 2010/11 – 9 Modern Methods of Inorganic Chemistry Mi 10:15-12:00, Hörsaal II George Sheldrick
Problem Set Problem 1—These are NOT orthogonal coordinates. Generally d=(a 2 x 2 +b 2 y 2 +c 2 z 2 +2abxycos  +2acxzcos  +2bcyzcos  ) 1/2 Similar formula.
Today: compute the experimental electron density map of proteinase K Fourier synthesis  (xyz)=  |F hkl | cos2  (hx+ky+lz -  hkl ) hkl.
1 Statistical Analysis - Graphical Techniques Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering EMIS 7370/5370 STAT 5340 : PROBABILITY AND.
Lecture 3 Patterson functions. Patterson functions The Patterson function is the auto-correlation function of the electron density ρ(x) of the structure.
Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc. Chap 8-1 Chapter 8 Confidence Interval Estimation Business Statistics: A First Course 5 th Edition.
Virtual University of Pakistan
Calculus, Section 1.4.
SOLID STATE By: Dr.DEPINDER KAUR.
Crystallographic Points, Directions, and Planes.
SOLID STATE By: Dr.Bhawna.
Phasing Today’s goal is to calculate phases (ap) for proteinase K using MIRAS method (PCMBS and GdCl3). What experimental data do we need? 1) from native.
Introduction to Isomorphous Replacement and Anomalous Scattering Methods Measure native intensities Prepare isomorphous heavy atom derivatives Measure.
Crystallographic Points, Directions, and Planes.
X-ray Neutron Electron
Confidence Interval Estimation
OMGT LECTURE 10: Elements of Hypothesis Testing
Presentation transcript:

Chem Patterson Methods In 1935, Patterson showed that the unknown phase information in the equation for electron density:  (xyz) = 1/V ∑ h ∑ k ∑ l |F(hkl)| exp[-2  i  (hkl)] exp[-2  i(h x + k y + l z)] can be removed if we do the summation on F 2 (hkl) and assume that all of the phases are 0. This provides the Patterson function: P(uvw) = 1/V ∑ h ∑ k ∑ l |F(hkl)| 2 exp[-2  i(h u + k v + l w)] Patterson showed that the position of a “peak” at (u,v,w) provided by this function correspond to the vectors between two atoms (at (x 1,y 1,z 1 ) and (x 2,y 2,z 2 ) in the crystal lattice such that: u = x 1 – x 2 v = y 1 -y 2 w = z 1 -z 2 And that there will be a corresponding peak at: u = x 2 – x 1 v = y 2 -y 1 w = z 2 -z 1

Chem Patterson Methods Note that a “map” in the context of crystallography refers to a 3-dimensional distribution of maxima, or “peaks” within a unit cell or a series of unit cells. For a unit cell that contains N atoms, the corresponding Patterson map will exhibit N 2 peaks, which can complicate things significantly. There are N peaks at the origin, representing the vector between each atom and itself, and N(N- 1) peaks within the unit cell. This can result in a map that is very congested and difficult to interpret. Note that the Patterson map is centrosymmetric, which further congests cells for non-centrosymmetric lattices.

Chem Patterson Methods The intensity of each peak is proportional to the product of the atomic numbers of the two atoms to which the vector refers. This makes Patterson functions particularly effective for the identification of the position of heavy atoms (and subsequently the other atoms) when most of the other atoms are light. A Patterson map can be constructed for a unit cell by translating each atom in the cell to the origin and putting a peaks of appropriate intensity at the new positions of the other atoms in the cell. Note that the intensity of the origin peak is proportional to:  Z 2 for all atoms in the unit cell and is usually scaled to e.g

Chem Patterson Methods The volume (width) of the peaks in a Patterson map are larger than the peaks that one would find in an electron density map, which can further complicate identification of individual peaks because of excessive overlap. This situation is usually improved in practice by applying a sharpening function that accentuates the peaks.

Chem Patterson Methods One particularly useful feature of Patterson functions is that the presence of peaks at certain positions provide information about the symmetry elements that are present (including mirror planes and rotation axes) in the unit cell and the coordinates of atoms that are related by these elements. The special positions are known as Harker lines and Harker planes (or sections).

Chem Patterson Methods Patterson methods are often the first choice for the solution of structures containing a few heavy atoms. The initial information provided by the identification of the correct atomic position of the heavy atom and some of the other atoms allows one to begin to calculate structure factors. This initial model can then be refined to determine the rest of the atomic positions (electron density) and thus solve the crystal structure.

Chem Patterson Methods The calculation of a Patterson map is a tedious process if done by hand (as it was in the past). For a centro-symmetric space group, the equation: P(uvw) = 1/V ∑ h ∑ k ∑ l |F(hkl)| 2 exp[-2  i(h u + k v + l w)] can be replaced with: P(uvw) = 1/V ∑ h ∑ k ∑ l |F(hkl)| 2 cos [2  (h u + k v + l w)] The map is then calculated by determining P(uvw) for increments of each unit cell parameter. E.g. (u,w,v) = (0.01,0,0), (0.02,0,0), (0.03,0,0) …(1,1,0.98), (1,1,0.99), (1,1,1). The calculated values of P(uvw) at each point are then used to generate the 2-D contour maps or 3-D intensity maps that you can use to determine the atomic positions. The process can be simplified by taking symmetry considerations into account but it is still tedious without a computer.

Chem Patterson Methods An example from the Stout and Jensen notes that I gave you in class (see pages ). The a molecule containing a single Br atom crystallizes in the space group P The Patterson peaks for this space group are given in the following table (from “Patterson Peaks” by D.L. Ward of MSU). Please note that you can replace the “+” signs with “±” signs in the peak positions.

Chem Patterson Methods Remember that the most intense peaks in the Patterson maps will be those corresponding to the Br-Br vectors. In the Harker section (1/2,v,w) for the 2 1 axis in the a direction, we see a peak at (48/96, 11/100, 21/100). From the table on the last page, this peak must correspond to the real coordinates (1/2, 1/2-2y, 2z), thus: y = ( )/(-2) = z = 0.21/2 = Thus we have discovered two of the coordinates and we must find the third from one of the other Harker sections.

Chem Patterson Methods In the Harker section (u,1/2,w) for the 2 1 axis in the b direction, we see a peak at (34/96, 50/100, 29/100). From the table on the last page, this peak must correspond to the real coordinates (2x, 1/2, 1/2-2z), thus: x = 17/96 = although it is not needed, as a check: does (0.105) = 0.29 ? 0.5 – 0.21 = 0.29, so everything is OK The coordinates of one of the Br atoms in the cell are thus: (0.177, 0.195, 0.105) The other coordinates can be generated by the equivalent position relationships.

Chem As a final check: In the Harker section (u,v,1/2) for the 2 1 axis in the c direction, we see a peak at (14/96, 39/100, 50/100). From the table on the last page, this peak must correspond to the real coordinates (1/2-2x, 2y, 1/2), thus: x = ( )/(-2) = (good) y = 0.39/2 = (good) So everything works out. Note that there are other acceptable solutions available using the various combinations of “+” and “-” signs. These will produce either a symmetry related set of coordinates or or a set of coordinates with the origin shifted (which is not a problem for this non-centrosymmetric space group). Patterson Methods

Chem Overall, the application of Patterson methods for structure solution can be summarized by the following steps: 1. calculate Patterson function: P(uvw) 2. solve for possible Heavy atom position(s) 3. use this position and the electron density to calculate an approximate phase angle (  hkl ) for each reflection 4. use these approximate  hkl values to calculate  (xyz) and plot it 5. interpret the electron density map in a chemically sensible way Patterson Methods

Chem Direct Methods “Direct Methods” is a statistical approach to the phase problem that relies on the (obviously reasonable) assumption that the electron density in the unit cell can never be less than 0, and the (less reasonable) assumption that atoms are discrete entities. The implication of the first requirement is that the phases that we use for the FT of the structure factors must produce a result that has the least amount of “negative” electron density. Direct methods employs phase relationships that are probably true to generate an initial set of phases/electron density map. Some of the important ideas/relationships used in Direct Methods are presented in the following slides. The mathematics underlying this approach are outlined in the “An Introduction to Direct Methods” handout for those of you who are interested. It should be noted that Direct Methods is the approach used to solve the phase problem for the majority of small molecules (such as the ones that we generally use).

Chem Direct Methods Structure factors with large amplitudes (“strong” reflections) correspond to regions having large amounts of electron density and are thus most important for the determination of phase information. Note that Direct Methods uses “normalized” structure factors E(hkl) instead of F(hkl) to allow the statistical methods to work. E(hkl) 2 = F(hkl) 2 / (  Σf j 2 ) Where  is an integer depending on (hkl) that corrects for the angular dependence of scattering intensity for the given reflection (i.e. the amplitude of E(hkl) does not depend on  ). Some important relationships used by Direct methods: (note that  h means  (h 1 k 1 l 1 ),  k means  (h 2 k 2 l 2 ) and  h-k means  ((h 1 -h 2 ) (k 1 -k 2 ) (l 1 -l 2 )) etc.) 1. For non-centrosymmetric structures:  -h +  k +  h-k = 0 e.g. if  (-1-10) = -100º and  (2-10) = 30º then  (-300) = -130º 2. For centrosymmetric structures: S -h · S k · S h-k = 1 Where S indicates the sign of the reflection e.g. if s(-1-10) = - and s(2-10) = + then s(-300) = - 3. There are numerous other relationships such as these that are used. see for example, Structure Invariants, quartet relationships etc. in the handout

Chem Direct Methods A physical and geometrical interpretation of one of these triplet relationships is shown below. Because strong reflections (denoted H and K) correspond to high concentrations of electron density, the intersection of the maxima of the waves (which are indicated by the planes) of two strong reflections is LIKELY to be the region of high electron density. In this light, the maxima for another strong reflection are likely to intersect with this point (and thus the phases of these reflections are related since the maxima occur at the same points).

Chem Direct Methods An example of Direct methods for a “1-D” molecule. For the molecule illustrated below, the (00l) structure factors observed are listed and depicted in the diagram to the right. Using Direct Methods we guess the phases of the most intense reflections and then use phase relationships to build up electron density and avoid negative electron density in the cell. The “guesses” are used to generate an electron density map which we examine to see if it makes sense chemically. Note that the lower angle reflections provide “coarse” estimates and the higher angle data provides finer detail. In this case, the best initial solution is obtained by setting the phases of the (004), (005) reflections to be negative. This build up amplitude near the first “trough” of each wave they cancel each other in the middle of the cell.

Chem Since 4+5 = 9, the sign of the (009) reflection will be positive since: (-)(-) = (+). Using similar phase relationships for the other relatively intense |F(00l)|, illustrated in the table below, a reasonable electron density map can be constructed. This is shown in the middle of the figure to the right. Notice the large peaks for the Br atoms and the smaller peaks that correspond to the series of C atoms in the molecule. Direct Methods

Chem Overall, the application of Direct Methods for structure solution can be summarized by the following steps: 1. Identify the strongest reflections 2. Guess the phases of the reflections and determine the appropriate phase relationships 3. use these guesses to calculate an approximate phase angle (  hkl ) for each reflection 4. use these approximate  hkl values to calculate  (xyz) and plot it 5. interpret the electron density map in a chemically sensible way (if it is no good, go back to step 2 and repeat) Direct Methods