Computer and Network Security Rabie A. Ramadan Lecture 6.

Slides:



Advertisements
Similar presentations
Key Management Nick Feamster CS 6262 Spring 2009.
Advertisements

Cryptography and Network Security Chapter 9
Unit 1: Protection and Security for Grid Computing.
Dr. Lo’ai Tawalbeh Summer 2007 Chapter 9 – Public Key Cryptography and RSA Dr. Lo’ai Tawalbeh New York Institute of Technology (NYIT) Jordan’s Campus INCS.
Cryptography and Network Security Chapter 9 Fourth Edition by William Stallings.
Cryptography1 CPSC 3730 Cryptography Chapter 10 Key Management.
Key Management public-key encryption helps address key distribution problems have two aspects of this: –distribution of public keys –use of public-key.
Cryptography and Network Security Chapter 9. Chapter 9 – Public Key Cryptography and RSA Every Egyptian received two names, which were known respectively.
Public Key Cryptography and the RSA Algorithm
Cryptography1 CPSC 3730 Cryptography Chapter 9 Public Key Cryptography and RSA.
CSCE 790: Computer Network Security Chin-Tser Huang University of South Carolina.
Private-Key Cryptography traditional private/secret/single key cryptography uses one key shared by both sender and receiver if this key is disclosed communications.
Dr.Saleem Al_Zoubi1 Cryptography and Network Security Third Edition by William Stallings Public Key Cryptography and RSA.
1 Pertemuan 08 Public Key Cryptography Matakuliah: H0242 / Keamanan Jaringan Tahun: 2006 Versi: 1.
Cryptography and Network Security Chapter 9 5th Edition by William Stallings Lecture slides by Lawrie Brown.
Cryptography and Network Security Chapter 10. Chapter 10 – Key Management; Other Public Key Cryptosystems No Singhalese, whether man or woman, would venture.
The RSA Algorithm JooSeok Song Tue.
Cryptography and Network Security Chapter 9 Fifth Edition by William Stallings Lecture slides by Lawrie Brown.
“RSA”. RSA  by Rivest, Shamir & Adleman of MIT in 1977  best known & widely used public-key scheme  RSA is a block cipher, plain & cipher text are.
Introduction to Public Key Cryptography
 Introduction  Requirements for RSA  Ingredients for RSA  RSA Algorithm  RSA Example  Problems on RSA.
Prime Numbers Prime numbers only have divisors of 1 and self
Cryptography A little number theory Public/private key cryptography –Based on slides of William Stallings and Lawrie Brown.
Key Management and Diffie- Hellman Dr. Monther Aldwairi New York Institute of Technology- Amman Campus 12/3/2009 INCS 741: Cryptography 12/3/20091Dr. Monther.
Public Key Cryptography and the RSA Algorithm Cryptography and Network Security by William Stallings Lecture slides by Lawrie Brown Edited by Dick Steflik.
Applied Cryptography (Public Key) RSA. Public Key Cryptography Every Egyptian received two names, which were known respectively as the true name and the.
Information Security Principles & Applications
Network Security Lecture 17 Presented by: Dr. Munam Ali Shah.
Private-Key Cryptography  traditional private/secret/single key cryptography uses one key  shared by both sender and receiver  if this key is disclosed.
Public Key Cryptography and RSA” Dr. Monther Aldwairi New York Institute of Technology- Amman Campus 11/9/2009 INCS 741: Cryptography 11/9/20091Dr. Monther.
Private-Key Cryptography  traditional private/secret/single key cryptography uses one key  shared by both sender and receiver  if this key is disclosed.
Cryptography and Network Security (CS435) Part Eight (Key Management)
CSCE 715: Network Systems Security Chin-Tser Huang University of South Carolina.
Public Key Cryptography. symmetric key crypto requires sender, receiver know shared secret key Q: how to agree on key in first place (particularly if.
1 Public-Key Cryptography and Message Authentication.
Cryptography and Network Security Chapter 9 - Public-Key Cryptography
CSCE 715: Network Systems Security Chin-Tser Huang University of South Carolina.
PUBLIC-KEY CRYPTOGRAPH IT 352 : Lecture 2- part3 Najwa AlGhamdi, MSc – 2012 /1433.
Chapter 3 (B) – Key Management; Other Public Key Cryptosystems.
Cryptography and Network Security Key Management and Other Public Key Cryptosystems.
Cryptography and Network Security Public Key Cryptography and RSA.
Cryptography and Network Security Chapter 9 Fourth Edition by William Stallings Lecture slides by Lawrie Brown.
Chapter 3 – Public Key Cryptography and RSA (A). Private-Key Cryptography traditional private/secret/single-key cryptography uses one key shared by both.
Chapter 9 Public Key Cryptography and RSA. Private-Key Cryptography traditional private/secret/single key cryptography uses one key shared by both sender.
1 Chapter 10: Key Management in Public key cryptosystems Fourth Edition by William Stallings Lecture slides by Lawrie Brown (Modified by Prof. M. Singhal,
Fall 2002CS 395: Computer Security1 Chapter 9: Public Key Cryptography.
Cryptography and Network Security Chapter 9 Fourth Edition by William Stallings Lecture slides by Lawrie Brown.
Key Management Network Systems Security Mort Anvari.
Cryptography and Network Security Third Edition by William Stallings Lecture slides by Lawrie Brown.
Cryptography and Network Security Chapter 9 Fourth Edition by William Stallings.
Cryptography and Network Security Third Edition by William Stallings Lecture slides by Lawrie Brown.
Lecture 11 Overview. Digital Signature Properties CS 450/650 Lecture 11: Digital Signatures 2 Unforgeable: Only the signer can produce his/her signature.
Lecture 9 Overview. Digital Signature Properties CS 450/650 Lecture 9: Digital Signatures 2 Unforgeable: Only the signer can produce his/her signature.
Cryptography and Network Security Chapter 10 Fourth Edition by William Stallings Lecture slides by Lawrie Brown.
1 Chapter 3-3 Key Distribution. 2 Key Management public-key encryption helps address key distribution problems have two aspects of this: –distribution.
By Marwan Al-Namari & Hafezah Ben Othman Author: William Stallings College of Computer Science at Al-Qunfudah Umm Al-Qura University, KSA, Makkah 1.
Chapter 9 – Public Key Cryptography and RSA Every Egyptian received two names, which were known respectively as the true name and the good name, or the.
CSCE 715: Network Systems Security Chin-Tser Huang University of South Carolina.
CIM PKI011 Public-key Encryption and Hash Functions Cryptography and Network Security Third Edition by William Stallings Modified from lecture slides.
CSEN 1001 Computer and Network Security Amr El Mougy Mouaz ElAbsawi.
Cryptography and Network Security Chapter 9 Fifth Edition by William Stallings Lecture slides by Lawrie Brown.
Visit for more Learning Resources
Lecture 5 RSA DR. Nermin Hamza.
Cryptography and Network Security
The RSA Algorithm JooSeok Song Tue.
Private-Key Cryptography
ICS 353: Design and Analysis of Algorithms
The RSA Algorithm JooSeok Song Tue.
Cryptography and Network Security
Chapter -5 PUBLIC-KEY CRYPTOGRAPHY AND RSA
Presentation transcript:

Computer and Network Security Rabie A. Ramadan Lecture 6

Table of Contents 2 RSA Other Public Key Cryptosystems Key management

3 Public Key Cryptography and Rivest-Shamir-Adleman (RSA)

4 Every Egyptian received two names, which were known respectively as the true name and the good name, or the great name and the little name; and while the good or little name was made public, the true or great name appears to have been carefully concealed. —The Golden Bough, Sir James George Frazer

Private-Key Cryptography 5 Traditional private/secret/single key cryptography uses one key Shared by both sender and receiver If this key is disclosed communications are compromised Also is symmetric, parties are equal Hence does not protect sender from receiver forging a message & claiming is sent by sender

Public-Key Cryptography 6 Uses two keys – a public & a private key Asymmetric since parties are not equal Uses clever application of number theoretic concepts to function Complements rather than replaces private key cryptography

Public-Key Cryptography 7 public-key/two-key/asymmetric cryptography involves the use of two keys: a public-key, which may be known by anybody, and can be used to encrypt messages, and verify signatures a private-key, known only to the recipient, used to decrypt messages, and sign (create) signatures It is asymmetric because those who encrypt messages or verify signatures cannot decrypt messages or create signatures

Public-Key Cryptography – Encryption 8

Public-Key Cryptography - Authentication 9

Public-Key Cryptosystems Secrecy and Authentication 10

Public-Key Cryptography 11 Developed to address two key issues: key distribution – how to have secure communications digital signatures – how to verify a message comes intact from the claimed sender encryption/decryption (provide secrecy) Public invention due to Whitfield Diffie & Martin Hellman at Stanford Uni in 1976

Public-Key Characteristics Public-Key algorithms rely on two keys with the characteristics that it is: Computationally infeasible to find decryption key knowing only algorithm & encryption key Computationally easy to en/decrypt messages when the relevant (en/decrypt) key is known Either of the two related keys can be used for encryption, with the other used for decryption (in some schemes)

RSA 13 By Rivest, Shamir & Adleman of MIT in 1977 Best known & widely used public-key scheme Based on exponentiation in a finite (Galois) field over integers modulo a prime Uses large integers (eg bits) Security due to cost of factoring large numbers factorization takes O(e log n log n log n ) operations (hard)

RSA 14 Each user generates a public/private key pair by: Selecting two large primes at random - p, q Computing their system modulus N=p.q note ø(N)=(p-1)(q-1) Selecting at random the encryption key e where 1<e<ø(N), gcd(e,ø(N))=1 Solve following equation to find decryption key d e.d=1 mod ø(N) and 0≤d≤N publish their public encryption key: KU={e,N} keep secret private decryption key: KR={d,p,q}

RSA Use 15 to encrypt a message M the sender: obtains public key of recipient KU={e,N} computes: C=M e mod N, where 0≤M<N to decrypt the ciphertext C the owner: uses their private key KR={d,p,q} computes: M=C d mod N note that the message M must be smaller than the modulus N (block if needed)

RSA Summary 16

RSA Example Select primes: p=17 & q=11 2. Compute n = pq =17×11= Compute ø(n)=(p–1)(q-1)=16×10= Select e : gcd(e,160)=1; choose e=7 5. Determine d: de=1 mod 160 and d < 160  d=23 6. Publish public key KU={7,187} 7. Keep secret private key KR={23,17,11}

Mod Operations 18 X = Y mod m Dividing X and Y by m must give the same number 7 = 23 mod 8  7/8 = 23/8 = 7 22 = 13 mod 9  22/9 = 13/9 = 4 Now  d.e = 1 mod 160  e =7  7d = 1 mod 160 7d /160 = 1/160  7d has to be something related to If d =23 then 23*7 /160 = 161/160 = 1/160 =1 Then e =7 and d =23 a+ kp = a mod p If d.e = (a+kp) that is what I need

Primarily and Coprima 19 X = Y mod m Dividing X and Y by m must give the same number 7 = 23 mod 8  7/8 = 23/8 = 7 22 = 13 mod 9  22/9 = 13/9 = 4 Now  d.e = 1 mod 160  e =7  7d = 1 mod 160 7d /160 = 1/160  7d has to be something related to If d =23 then 23*7 /160 = 161/160 = 1/160 =1 Then e =7 and d =23 a+ kp = a mod p If d.e = (a+kp) that is what I need

RSA Example (Cont.) 20 sample RSA encryption/decryption is: given message M = 88 (nb. 88<187) encryption: C = 88 7 mod 187 = 11 decryption: M = mod 187 = 88

RSA Security 21 Three approaches to attacking RSA: brute force key search (infeasible given size of numbers) mathematical attacks (based on difficulty of computing ø(N), by factoring modulus N timing attacks (on running of decryption)

22 Key Management

Public-key encryption helps address key distribution problems Have two aspects of this: Distribution of public keys Use of public-key encryption to distribute secret keys

Distribution of Public Keys Can be considered as using one of: Public announcement Publicly available directory Public-key authority Public-key certificates

Public Announcement Users distribute public keys to recipients or broadcast to community at large eg. append PGP keys to messages or post to news groups or list Major weakness is forgery Anyone can create a key claiming to be someone else and broadcast it Until forgery is discovered can masquerade as claimed user

Publicly Available Directory Can obtain greater security by registering keys with a public directory Directory must be trusted with properties: contains {name,public-key} entries participants register securely with directory participants can replace key at any time directory is periodically published directory can be accessed electronically Still vulnerable to tampering or forgery

Public-Key Authority Improve security by tightening control over distribution of keys from directory Has properties of directory And requires users to know public key for the directory Then users interact with directory to obtain any desired public key securely Does require real-time access to directory when keys are needed Could be a bottleneck

Public-Key Authority