Wednesday, Sept. 8, 2004PHYS 1443-003, Fall 2004 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #5 Wednesday, Sept. 8, 2004 Dr. Jaehoon Yu 1.One Dimensional.

Slides:



Advertisements
Similar presentations
PHYS 1441 – Section 002 Lecture #5 Wednesday, Jan. 30, 2013 Dr. Jaehoon Yu One Dimensional Motion One dimensional Kinematic Equations How do we solve kinematic.
Advertisements

3. Motion in Two and Three Dimensions
Wednesday, Oct. 20, 2010PHYS , Fall 2010 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #13 Wednesday, Oct. 20, 2010 Dr. Jaehoon Yu Motion in.
Acceleration 1D motion with Constant Acceleration Free Fall Lecture 04 (Chap. 2, Sec ) General Physics (PHYS101) Sections 30 and 33 are canceled.
Tuesday, June 16, 2015PHYS , Summer 2015 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #5 Tuesday, June 16, 2015 Dr. Jaehoon Yu Trigonometry.
Problems Ch(1-3).
Wednesday, Feb. 6, 2008 PHYS , Spring 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #7 Wednesday, Feb. 6, 2008 Dr. Jaehoon Yu Motion in.
Wednesday, Sept. 1, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #4 Wednesday, Sept. 1, 2004 Venkat Kaushik 1.One Dimensional.
Thursday, June 11, 2015PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #4 Thursday, June 11, 2015 Dr. Jaehoon Yu Chapter 2:
Thursday, June 5, 2014PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #4 Thursday, June 5, 2014 Dr. Jaehoon Yu Chapter 2: One.
Wednesday, Sept. 3, 2003PHYS , Fall 2003 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #3 Wednesday, Sept. 3, 2003 Dr. Jaehoon Yu 1.One Dimensional.
PHYS 1441 – Section 002 Lecture #7 Wednesday, Feb. 6, 2013 Dr. Jaehoon Yu What is the Projectile Motion? How do we solve projectile motion problems? Maximum.
Wednesday, Jan. 30, 2008 PHYS , Spring 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #5 Wednesday, Jan. 30, 2008 Dr. Jaehoon Yu Acceleration.
Thursday, Sept. 4, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #4 Thursday, Sept. 4, 2014 Dr. Jaehoon Yu Today’s homework.
Wednesday, Sept. 12, 2007 PHYS , Fall 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #5 Wednesday, Sept. 12, 2007 Dr. Jaehoon Yu Coordinate.
PHYS 1443 – Section 002 Lecture #4 Monday, September 8, 2008 Dr. Jaehoon Yu One Dimensional Motion Instantaneous Speed and Velocity Acceleration 1D Motion.
Thursday, May 31, 2007PHYS , Summer 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #3 Thursday, May 31, 2007 Dr. Jaehoon Yu One Dimensional.
PHYS 1441 – Section 002 Lecture #8 Monday, Feb. 11, 2013 Dr. Jaehoon Yu Maximum Range and Height What is the Force? Newton’s Second Law Free Body Diagram.
Monday, Feb. 4, 2008 PHYS , Spring 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #6 Monday, Feb. 4, 2008 Dr. Jaehoon Yu Examples for 1-Dim.
Tuesday, Sept. 9, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #5 Tuesday, Sept. 9, 2014 Dr. Jaehoon Yu Motion in two.
Wednesday, Sept. 15, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Motion in two dimension Maximum ranges and heights –Reference Frames and relative.
Tuesday, June 10, 2014PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #5 Tuesday, June 10, 2014 Dr. Jaehoon Yu Trigonometry.
(3) Contents Units and dimensions Vectors Motion in one dimension Laws of motion Work, energy, and momentum Electric current, potential, and Ohm's law.
Monday, Sept. 13, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Motion in two dimension Motion under constant acceleration Projectile motion Heights.
Monday, February 2, 2004PHYS , Spring 2004 Dr. Andrew Brandt 1 PHYS 1443 – Section 501 Lecture #4 Monday, Feb. 2, 2004 Dr. Andrew Brandt Motion.
Monday, Feb. 16, 2004PHYS , Spring 2004 Dr. Jaehoon Yu 1 PHYS 1441 – Section 004 Lecture #8 Monday, Feb. 16, 2004 Dr. Jaehoon Yu Chapter four:
Monday, Jan. 28, 2008 PHYS , Spring 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #4 Monday, Jan. 28, 2008 Dr. Jaehoon Yu Some Fundamentals.
Wednesday, June 9, 2004PHYS , Summer 2004 Dr. Jaehoon Yu 1 PHYS 1441 – Section 501 Lecture #3 Wednesday, June 9, 2004 Dr. Jaehoon Yu Today’s homework.
Wednesday, Sept. 15, 2010 PHYS , Fall 2010 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #4 Wednesday, Sept. 15, 2010 Dr. Jaehoon Yu One Dimensional.
Wednesday, Feb. 4, 2009PHYS , Spring 2009 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #3 Wednesday, Feb. 4, 2009 Dr. Jaehoon Yu Dimensional.
Thursday, May 29, 2008PHYS , Summer 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #3 Thursday, May 29, 2008 Dr. Jaehoon Yu One Dimensional.
Wed., Jan. 16, 2002PHYS , Spring 2002 Dr. Jaehoon Yu 1 PHYS 1443 – Section 501 Lecture #2 Monday, Jan. 16, 2002 Dr. Jaehoon Yu 1.Some Chapter 1.
Monday, Sept. 10, 2007 PHYS , Fall 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #4 Monday, Sept. 10, 2007 Dr. Jaehoon Yu Acceleration.
PHYS 1441 – Section 002 Lecture #3 Wednesday, Jan. 23, 2013 Dr. Jaehoon Yu Chapter 1 Dimensions and dimensional analysis Chapter 2: Some Fundamentals One.
Monday, Feb. 9, 2004PHYS , Spring 2004 Dr. Jaehoon Yu 1 PHYS 1441 – Section 004 Lecture #6 Monday, Feb. 9, 2004 Dr. Jaehoon Yu Chapter three: Motion.
Wednesday, June 8, 2011PHYS , Spring 2011 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #3 Wednesday, June 8, 2011 Dr. Jaehoon Yu One Dimensional.
Monday, Sept. 20, 2010PHYS , Fall 2010 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #5 Monday, Sept. 20, 2010 Dr. Jaehoon Yu One Dimensional.
Monday, June 13, 2011PHYS , Spring 2011 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #5 Monday, June 13, 2011 Dr. Jaehoon Yu Newton’s Laws.
Wednesday, Sept. 19, 2007 PHYS , Fall 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #7 Wednesday, Sept. 19, 2007 Dr. Jaehoon Yu Motion.
Wednesday, Aug. 27, 2003 PHYS , Fall 2003 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #2 Wednesday, Aug. 27, 2003 Dr. Jaehoon Yu 1.Dimensional.
Monday, Sept. 29, PHYS , Fall 2008 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #8 Monday, Sept. 29, 2008 Dr. Jaehoon Yu Newton’s Laws.
Wednesday, Feb. 11, 2009 PHYS , Spring 2009 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #5 Wednesday, Feb. 11, 2009 Dr. Jaehoon Yu Coordinate.
Wednesday, Feb. 4, 2004PHYS , Spring 2004 Dr. Jaehoon Yu 1 PHYS 1441 – Section 004 Lecture #5 Wednesday, Feb. 4, 2004 Dr. Jaehoon Yu Chapter two:
Spring 2002 Lecture #3 Dr. Jaehoon Yu 1.Coordinate Systems 2.Vector Properties and Operations 3.2-dim Displacement, Velocity, & Acceleration 4.2-dim.
Tuesday, June 7, 2011PHYS , Spring 2011 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #2 Tuesday, June 7, 2011 Dr. Jaehoon Yu Dimensional Analysis.
Wednesday, June 8, 2016PHYS , Summer 2016 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #3 Wednesday, June 8, 2016 Dr. Jaehoon Yu Chapter 21.
PHYS 1441 – Section 002 Lecture #6
PHYS 1443 – Section 003 Lecture #3
PHYS 1441 – Section 001 Lecture #5
PHYS 1441 – Section 002 Lecture #4
PHYS 1443 – Section 002 Lecture #6
PHYS 1443 – Section 001 Lecture #4
PHYS 1443 – Section 001 Lecture #4
Chapter 3 Kinetics in Two or Three Dimensions, Vectors (1 week)
PHYS 1441 – Section 002 Lecture #4
PHYS 1441 – Section 001 Lecture #2
PHYS 1443 – Section 003 Lecture #5
PHYS 1443 – Section 501 Lecture #3
PHYS 1443 – Section 003 Lecture #4
PHYS 1443 – Section 003 Lecture #3
PHYS 1441 – Section 002 Lecture #8
PHYS 1441 – Section 002 Lecture #4
PHYS 1443 – Section 003 Lecture #2
PHYS 1443 – Section 001 Lecture #4
PHYS 1443 – Section 001 Lecture #5
PHYS 1443 – Section 002 Lecture #5
PHYS 1441 – Section 002 Lecture #6
PHYS 1443 – Section 002 Lecture #5
PHYS 1441 – Section 501 Lecture #2
PHYS 1443 – Section 002 Lecture #5
Presentation transcript:

Wednesday, Sept. 8, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #5 Wednesday, Sept. 8, 2004 Dr. Jaehoon Yu 1.One Dimensional Motion Motion under constant acceleration Free Fall 2. Motion in Two Dimensions Vector Properties and Operations Motion under constant acceleration Projectile Motion Today’s homework is HW #4, due 1pm, next Wednesday, Sept. 15!!

Wednesday, Sept. 8, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 2 Announcements distribution list: 25 of you have registered – Important communication tool!! –Next Wednesday is the last day of registration –-5 extra points if you don’t register by next Wednesday! –A test message will be sent out next Wednesday!! Homework: 43/47 of you are registered! Quiz Results –Class average: 8.7/15 –Top score: 15 –Quiz accounts for 15%. Please do not miss!

Wednesday, Sept. 8, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 3 Kinematic Equations of Motion on a Straight Line Under Constant Acceleration Velocity as a function of time Displacement as a function of velocities and time Displacement as a function of time, velocity, and acceleration Velocity as a function of Displacement and acceleration You may use different forms of Kinetic equations, depending on the information given to you for specific physical problems!!

Wednesday, Sept. 8, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 4 How do we solve a problem using a kinematic formula for constant acceleration? Identify what information is given in the problem. –Initial and final velocity? –Acceleration? –Distance? –Time? Convert the units to SI to be consistent. Identify what the problem wants. Identify which formula is appropriate and easiest to solve for what the problem wants. –Frequently multiple formula can give you the answer for the quantity you are looking for.  Do not just use any formula but use the one that can be easiest to solve. Solve the equation for the quantity wanted.

Wednesday, Sept. 8, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 5 Example 2.11 Suppose you want to design an air-bag system that can protect the driver in a head- on collision at a speed 100km/hr (~60miles/hr). Estimate how fast the air-bag must inflate to effectively protect the driver. Assume the car crumples upon impact over a distance of about 1m. How does the use of a seat belt help the driver? How long does it take for the car to come to a full stop?As long as it takes for it to crumple. We also know that and Using the kinematic formula The acceleration is Thus the time for air-bag to deploy is The initial speed of the car is

Wednesday, Sept. 8, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 6 Free Fall Free fall is a motion under the influence of gravitational pull (gravity) only; Which direction is a freely falling object moving? –A motion under constant acceleration –All kinematic formula we learned can be used to solve for falling motions. Gravitational acceleration is inversely proportional to the distance between the object and the center of the earth The gravitational acceleration is g=9.80m/s 2 on the surface of the earth, most of the time. The direction of gravitational acceleration is ALWAYS toward the center of the earth, which we normally call (-y); where up and down direction are indicated as the variable “y” Thus the correct denotation of gravitational acceleration on the surface of the earth is g=-9.80m/s 2

Wednesday, Sept. 8, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 7 Example for Using 1D Kinematic Equations on a Falling object Stone was thrown straight upward at t=0 with +20.0m/s initial velocity on the roof of a 50.0m high building, g=-9.80m/s 2 (a) Find the time the stone reaches at the maximum height. What is the acceleration in this motion? What is so special about the maximum height?V=0 (b) Find the maximum height. Solve for t

Wednesday, Sept. 8, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 8 Example of a Falling Object cnt’d Position Velocity (c) Find the time the stone reaches back to its original height. (d) Find the velocity of the stone when it reaches its original height. (e) Find the velocity and position of the stone at t=5.00s.

Wednesday, Sept. 8, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 9 Coordinate Systems Makes it easy to express locations or positions Two commonly used systems, depending on convenience –Cartesian (Rectangular) Coordinate System Coordinates are expressed in (x,y) –Polar Coordinate System Coordinates are expressed in (r  ) Vectors become a lot easier to express and compute O (0,0) (x 1,y 1 )=(r  ) r  How are Cartesian and Polar coordinates related? y1y1 x1x1 +x +y

Wednesday, Sept. 8, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 10 Example Cartesian Coordinate of a point in the xy plane are (x,y)= (-3.50,- 2.50)m. Find the polar coordinates of this point. y x (-3.50,-2.50)m r  ss

Wednesday, Sept. 8, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 11 Vector and Scalar Vector quantities have both magnitude (size) and direction Scalar quantities have magnitude only Can be completely specified with a value and its unit Force, gravitational acceleration, momentum BOLD F Normally denoted in BOLD letters, F, or a letter with arrow on top Their sizes or magnitudes are denoted with normal letters, F, or absolute values: Energy, heat, mass, time Normally denoted in normal letters, E Both have units!!!

Wednesday, Sept. 8, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 12 Properties of Vectors Two vectors are the same if their and the are the same, no matter where they are on a coordinate system. x y A B E D C F Which ones are the same vectors? A=B=E=D Why aren’t the others? C: C=-A: C: The same magnitude but opposite direction: C=-A: A negative vector F: F: The same direction but different magnitude sizesdirections

Wednesday, Sept. 8, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 13 Vector Operations Addition: –Triangular Method: One can add vectors by connecting the head of one vector to the tail of the other (head-to-tail) –Parallelogram method: Connect the tails of the two vectors and extend A+B=B+AA+B+C+D+E=E+C+A+B+D –Addition is commutative: Changing order of operation does not affect the results A+B=B+A, A+B+C+D+E=E+C+A+B+D A B A B = A B A+B Subtraction: A B = A B –The same as adding a negative vector: A - B = A + (- B )A -B Since subtraction is the equivalent to adding a negative vector, subtraction is also commutative!!! A, BAMultiplication by a scalar is increasing the magnitude A, B =2 AA B=2A A+B A+B A-B OR

Wednesday, Sept. 8, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 14 Example for Vector Addition A car travels 20.0km due north followed by 35.0km in a direction 60.0 o west of north. Find the magnitude and direction of resultant displacement. N E    r 20A B Find other ways to solve this problem… Bcos  Bsin 

Wednesday, Sept. 8, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 15 Components and Unit Vectors Coordinate systems are useful in expressing vectors in their components (A x,A y ) A  AyAy AxAx x y } Components (+,+) (-,+) (-,-)(+,-) Unit vectors are dimensionless vectors whose magnitude are exactly 1 Unit vectors are usually expressed in i, j, k or Vectors can be expressed using components and unit vectors A So the above vector A can be written as } Magnitude

Wednesday, Sept. 8, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 16 Examples of Vector Operations AijB ij Find the resultant vector which is the sum of A =(2.0 i +2.0 j ) and B =(2.0 i -4.0 j ) d 1 ij kd 2 ij kd 3 ij Find the resultant displacement of three consecutive displacements: d 1 =(15 i +30 j +12 k )cm, d 2 =(23 i +14 j -5.0 k )cm, and d 3 =(-13 i +15 j )cm Magnitude