CLIC MDI stabilization update A.Jeremie G.Balik, B.Bolzon, L.Brunetti, G.Deleglise A.Badel, B.Caron, R.Lebreton, J.Lottin Together with colleagues from.

Slides:



Advertisements
Similar presentations
Passive isolation: Pre-isolation for FF quads A. Gaddi, H. Gerwig, A. Hervé, N. Siegrist, F. Ramos.
Advertisements

CLIC stabilisation contribution A.Jeremie, B.Caron, A.Badel, R.LeBreton, J.Lottin, G.Balik, J.P.Baud, L.Brunetti, G.Deleglise, S.Vilalte.
1 LAViSta Laboratories in Annecy working on Vibration and Stabilisation Impact of random and determinist acoustic noise on vibrations at high frequencies.
SIMPLIFIED MODELS OF ILD AND SID DETECTORS: SIMULATIONS AND SCALED TEST ULB: Christophe Collette, David Tschilumba, Lionel SLAC: Marco.
Takanori Sekiguchi Italy-Japan Workshop (19 April, 2013) Inverted Pendulum Control for KAGRA Seismic Attenuation System 1 D2, Institute for Cosmic Ray.
Seismic sensors in PACMAN
ILC roles Interferometry Results 2009 / 2010 Mon 20 Apr :00 JST (01:00 UTC) MDI TILC09 – Tsukuba OXFORD MONALISA 1.
Sta bilization of the F inal F ocus : Stabilization with Nano-Meter Precision.
Benoit BOLZON Nanobeam 2005 – Kyoto Active mechanical stabilisation LAViSta Laboratories in Annecy working on Vibration Stabilisation Catherine ADLOFF.
Stabilization of the FF quads A.Jeremie B.Bolzon, L.Brunetti, G.Deleglise, N.Geffroy A.Badel, B.Caron, R.Lebreton, J.Lottin Together with colleagues from.
Vibration Stabilization Experimental Results CLIC Main Beam and Final Focus Magnet Stabilization A.Jeremie LAPP: A.Jeremie, S.Vilalte, J.Allibe, G.Balik,
QD0 stabilisation update (since last update in MDI) A.Jeremie A.Badel, B.Caron, R.LeBreton, J.Lottin, J.Allibe, G.Balik, J.P.Baud, L.Brunetti, G.Deleglise.
STABILIZATION FOR LHC INNER TRIPLETS S. Janssens, K. Artoos, M. Guinchard NOT for Distribution.
B. Caron, G. Balik, L. Brunetti LAViSta Team LAPP-IN2P3-CNRS, Université de Savoie, Annecy, France & SYMME-POLYTECH Annecy-Chambéry, Université de Savoie,
CERN VIBRATION SENSOR PROPOSAL The research leading to these results has received funding from the European Commission under the FP7 Research Infrastructures.
Introduction to seismic sensors (subject 3.2) Peter Novotny PACMAN meeting, CERN, 7 October 2014.
1 ATF2 project: Investigation on the honeycomb table vibrations Benoit BOLZON 33rd ATF2 meeting, 24th January 2007 Laboratories in Annecy working on Vibration.
ATF2 week meeting: Impact of cooling water on the final doublets vibrations Benoît BOLZON Laboratories in Annecy working on Vibration Stabilization 15/10/08.
Vibration measurements on the final doublets and the Shintake Monitor Benoît BOLZON7th ATF2 project meeting, 16/12/08.
Concepts for Combining Different Sensors for CLIC Final Focus Stabilisation David Urner Armin Reichold.
Techniques to approach the requirements of CLIC stability K. Artoos, O. Capatina (speaker), M. Guinchard, C. Hauviller, F. Lackner, H. Schmickler, D. Schulte.
Installation of FD in September A.Jeremie, B.Bolzon, N.Geffroy, G.Gaillard, J.P.Baud, F.Peltier With the help of KEK, SLAC, KNU and CERN colleagues For.
IN2P3 Les deux infinis G. Balik, B. Caron, L. Brunetti (LAViSta Team) LAPP-IN2P3-CNRS, Université de Savoie, Annecy, France & SYMME-POLYTECH Annecy-Chambéry,
CERN, BE-ABP (Accelerators and Beam Physics group) Jürgen Pfingstner Orbit feedback design for the CLIC ML and BDS Orbit feedback design for the CLIC ML.
QD0 stabilization L. Brunetti 1, N. Allemandou 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2, C. Hernandez 2, (LAViSta.
LINAC STABILISATION (INCLUDING FF) MECHANICAL STABILISATION AND NANO POSITIONING WITH ANGSTROM RESOLUTION The research leading to these results has received.
CLIC QD0 Stabilization J. Allibe 1, L. Brunetti 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2,C.Hernandez 2 1 : LAPP-IN2P3-CNRS,
MONALISA an Update David Urner Paul Coe Matthew Warden Armin Reichold Monitoring, Alignment & Stabilisation with high Accuracy.
STABILIZATION ACHIEVEMENTS AND PLANS FOR TDR PHASE CLIC MAIN BEAM QUADRUPOLE MECHANICAL STABILIZATION K. Artoos, C. Collette, P. Fernandez Carmona, M.
Stabilization of Focus at ATF2 David Urner University of Oxford.
Active Vibration Stabilization for the NLC Final Focus Quads Josef Frisch, Linda Hendrickson, Thomas Himel, Andrei Seryi,
July 5, 2007 C. HAUVILLER CLIC stabilization Beam line and final focus.
CARE / ELAN / EUROTeV Feedback Loop on a large scale quadrupole prototype Laurent Brunetti* Jacques Lottin**
1 FP7 LED Potential program to develop inertial sensors Explore potential to achieve 0.1nm stability scale for the FD above a few Herz A.Jeremie, C.Hauviller.
CARE / ELAN / EUROTeV Active stabilization of a mechanical structure Laurent BRUNETTI LAViSta Team LAPP-IN2P3-CNRS,
Hard or Soft ? C. Collette, K. Artoos, S. Janssens, P. Fernandez-Carmona, A. Kuzmin, M. Guinchard, A. Slaathaug, C. Hauviller The research leading to these.
B. Caron, G. Balik, L. Brunetti LAViSta Team LAPP-IN2P3-CNRS, Université de Savoie, Annecy, France & SYMME-POLYTECH Annecy-Chambéry, Université de Savoie,
PROGRESS ON THE CLIC MBQ STABILIZATION R&D K. Artoos, C. Collette **, M. Esposito, P. Fernandez Carmona, M. Guinchard, S. Janssens*, R. Leuxe, R. Morón.
1 ATF2 Project Meeting December 2006 Ground Stabilisation with the CERN STACIS 2000 Stable Active Control Isolation System LAViSta Laboratories in.
Stabilization of the quadrupoles of the main linac One of the CLIC feasibility issues C. Hauviller/ EN CLIC Meeting April 9, 2010.
Main beam Quad Stabilisation: Status of the stabilisation test program at CERN CLIC-stabilization day S. Janssens Contribution to slides by:
Possible technical implementation, R&D program until 2010 C. Hauviller CERN Feasibility item 6: Main Linac active alignment/beam based feedback/stabilization.
Passive isolation: Pre-isolation for FF quads A. Gaddi, H. Gerwig, A. Hervé, N. Siegrist, F. Ramos.
STABILISATION AND PRECISION POINTING QUADRUPOLE MAGNETS IN THE COMPACT LINEAR COLLIDER S. Janssens, P. Fernandez Carmona, K. Artoos, C. Collette, M. Guinchard.
Superconducting final doublet Support A.Jeremie. SC magnet steps Motivation: have an active stabilisation as planned in ILC and CLIC => need to evaluate.
Vibrations studies for the nominal optics and the ultra-low beta optics Benoît BOLZON 1 B. Bolzon, A. Jeremie (LAPP) P. Bambade, Y. Renier (LAL) A. Seryi.
Beam Physics Issues of Main Beam Stabilisation A.Jeremie (LAPP) C.Hauviller (CERN)
CERN, 27-Mar EuCARD NCLinac Task /3/2009.
FP7: EuCARD after a year of preparation… A.Jeremie.
ATF2: final doublet support Andrea JEREMIE B.Bolzon, N.Geffroy, G.Gaillard, J.P.Baud, F.Peltier With constant interaction with colleagues from KEK, SLAC.
Test plan for CLIC MB linac quad LAPP option A.Jeremie.
QD0 stabilisation in CLIC CDR A.Jeremie with LAViSta team.
EuCARD NCLinac 9.3 Linac and FF Stabilisation A.Jeremie.
FF Stabilisation A.Jeremie (Summary of things learned and work done at LAPP, CERN, SYMME, Oxford, SLAC)
QD0 Stabilisation L. Brunetti 1, J. Allibe 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2, A. Badel 2, R. Le Breton.
CARE05 – November Status report on active stabilisation of a linear collider final focus quadrupole mock-up J. Lottin, ESIA
EuroTeV WP7 activities at DESY Group Members: R. Amirikas, A. Bertolini, W. Bialowons, H. Ehrlichmann Total Man Power: 1.5 reaching 2 (maximum)
Alignment and stability session
Summary FD Support System
CLIC magnets precise positioning
Seismic motion analysis of the SuperB site of Frascati
Active isolation Target : a low cost dedicated table
3: ISI ASCR, Brno University of Technology, Brno, Czech Republic
Topics on Vibration Issues
Laboratories in Annecy working on Vibration Stabilization
Sub-nanometer displacement measurements in seismic sensors.
ATF2: final doublet support
Background With new accelerators delivering beams always smaller and more energetic, requirements for very precise beam alignment become more and more.
A.Jeremie Some drawings from different CLIC’08 presentations
IP configuration session
Presentation transcript:

CLIC MDI stabilization update A.Jeremie G.Balik, B.Bolzon, L.Brunetti, G.Deleglise A.Badel, B.Caron, R.Lebreton, J.Lottin Together with colleagues from the CLIC stabilisation WG and CLIC MDI WG IWLC2010 International Workshop on Linear Colliders 2010

Some comments Several PhDs: –C.Montag (DESY) 1997 –S.Redaelli (CERN) 2003 –B.Bolzon (LAPP) 2007 –M.Warden (Oxford) 2010 –R. LeBreton (SYMME) ~2012 TolerancesMain beam Quadrupoles Final Focusing Quadrupoles Vertical1 nm > 1 Hz0.1 nm > 4 Hz Horizontal5 nm > 1 Hz5 nm > 4 Hz There is no completely validated stabilization system (off the shelf) available yet… There are proofs of principle available. Initially, only vertical direction was studied 2IWLC2010 Geneva 2010 A.Jeremie

Example of spectral analysis of different disturbance sources Acoustic disturbance : Amplified by the structure itself : the eigenfrequencies Ground motion : Seismic motion Cultural noise A pink noise on a large bandwidth 2 different mechanical functions: Isolate Compensate the resonances 3IWLC2010 Geneva 2010 A.Jeremie

CERN vibration test stand Sub-Nanometer Isolation CLIC small quadrupole stabilised to nanometer level by active damping of natural floor vibration passive active (S.Redaelli 2003) 4IWLC2010 Geneva 2010 A.Jeremie

5 Cantilever FF stabilisation CERN TMC active table for isolation  The two first resonances entirely rejected  Achieved integrated rms of 0.13nm at 5Hz LAPP active system for resonance rejection Isolation Resonance rejection (L.Brunetti et al, 2007) 2.5m FF Al mock-up Feasibility already demonstrated IWLC2010 Geneva 2010 A.Jeremie

Current studies 6IWLC2010 Geneva 2010 A.Jeremie

Replace big TMC table by smaller device 7IWLC2010 Geneva 2010 A.Jeremie

8 3 d.o.f. : actuators Relative sensors (more compact) elastomere joint in between for guidance Initial study hypthesis: Soft support and active vibration control Rigid: less sensitive to external forces but less broadband damping IWLC2010 Geneva 2010 A.Jeremie Active vibration control

9 Active vibration control construction IWLC2010 Geneva 2010 A.Jeremie

10 Mid-lower magnet 1355mm Elastomeric strips for guidance Piezoelectric actuator below its micrometric screw Lower electrode of the capacitive sensor Fine adjustments for capacitive sensor (tilt and distance) V-support for the magnet First tests in Annecy 2mV=0.1nm Next step: add feedback 240mm

11 Later study adding “soft” material IWLC2010 Geneva 2010 A.Jeremie

12 Need sensors that can measure nm, 0.1Hz-100Hz in accelerator Absolute velocity/acceleration studied at LAPP: Relative displacement/velocity: Capacitive gauges :Best resolution 10 pm (PI), 0 Hz to several kHz Linear encoders best resolution 1 nm (Heidenhain) Vibrometers (Polytec) ~1nm at 15 Hz Interferometers (SIOS, Renishaw, Attocube) <1 nm at 1 Hz OXFORD MONALISA (laser interferometry) Optical distance meters Compact Straightness Monitors (target 1 nm at 1 Hz) Sub-nanometre measurements CERN test bench : membrane and interferometer ATF2 vibration and vacuum test  Validation  Next: optical test

13 IWLC2010 Geneva 2010 A.Jeremie Cantilever option Gauss points option How to integrate with the rest (cantilever or Gauss points) Active stabilisation system Absolute measurement sensor

IWLC2010 Geneva 2010 A.Jeremie14 Position at the IP: ∆Y Ground motion Desired beam position: Y=0 + + Active/passive isolation Actuator (Kicker) Mechanical scheme and automation point of view + + Disturbances on the magnet See G.Balik’s talk

IWLC2010 Geneva 2010 A.Jeremie15 Pattern of a global active/passive isolation ∆Y(q) X(q) Y= W(q) K g (q) G(q)=q H(q) D(q) H a (q) + - Resonant frequency f 0 [Hz] Static gain G o Possibility to determine the pattern of the global isolation (K g ) Example if we consider Kg as a second order low pass filter:

Active/passive isolation IWLC2010 Geneva 2010 A.Jeremie16 Position at the IP: ∆Y Ground motion Y= BPM noise Actuator (Kicker) + - Controller Sensor (BPM) + + Disturbances on the magnet Adaptive filter + - TMC Table (K 1 ) Mechanical support (K 2 ) ACTIVE/PASSIVE ISOLATION MAGNET = + TMC table (K 1 ) Mechanical support (K 2 ) Illustration with industrial products

17IWLC2010 Geneva 2010 A.Jeremie For the simulation: The mechanical support behavior is as a first approximation considered as a second order low-pass filter Integrated RMS displacement [m] Frequency [Hz] PSD [m²/Hz] Frequency [Hz] Results One single system doesn’t seem enough: need to find the subtle combination of different stabilisation strategies 0.2nm at 0.1Hz 0.018nm at 0.1Hz

W: white noise added to the measured displacement BPM’s noise has to be < 13 pm integrated 0.1 Hz Integrated RMS displacement = f(W) 18IWLC2010 Geneva 2010 A.Jeremie Robustness (BPM noise) ∆Y(q) X(q) Y= W(q) K g (q) G(q)=q H(q) D(q) H a (q) + - BPM noise W [m] Integrated RMS at 0.1 Hz [m] The used BPM is a post collision BPM: Amplification of 10 5 Next step: implement in Placet for final validation

Conclusions 19IWLC2010 Geneva 2010 A.Jeremie Proof of principle for CLIC FF stabilisation OK for CDR Need final validation of the technical system better adapted to tight IR space Need a more realistic integration scheme Plans for TDR: Detailed technical validation Detailed integration Final sensor choice (develop a specific sensor?) Test on short version QD0 prototype (vibration measurements w/wout cooling and stabilisation…)

Results : integrated displacement RMS Tests with the large prototype Active control 20IWLC2010 Geneva 2010 A.Jeremie

Güralp CMG-40T Sensor type: electromagnetic geophone broadband Signal: velocity x,y,z Sensitivity: 1600V/m/s Frequency range: 0,033-50Hz Mass: 7,5kg Radiation: Feedback loop so no Magnetic field: no Feedback loop First resonance 440Hz Temperature sensitivity: 0,6V/10°C Electronic noise measured at >5Hz: 0,05nm Stable calibration IWLC2010 Geneva 2010 A.Jeremie21

Endevco 86 Sensor type: piezoelectric accelerometer Signal: acceleration z Sensitivity: 10V/g Frequency range: 0,01-100Hz but useful from 7Hz Mass: 771g Radiation: piezo OK, but resin? Magnetic field: probably OK but acoustic vibrations? Feedback loop First resonance 370Hz Temperature sensitivity: <1% Electronic noise measured at >5Hz: 0,25nm, >50Hz 0,02nm Stable calibration, flat response Doesn’t like shocks IWLC2010 Geneva 2010 A.Jeremie22

SP500 Sensor type: electrochemical, special electrolyte Signal: velocity Sensitivity: 20000V/m/s Frequency range: 0,016-75Hz Mass: 750g Radiation: no effect around BaBar (don’t know exact conditions) Magnetic field: tested in 1T magnet => same coherence, amplitude? Feedback loop First resonance >200Hz Electronic noise measured at >5Hz: 0,05nm Unstable calibration, response not flat Robust IWLC2010 Geneva 2010 A.Jeremie23