DYMECS: Dynamical and Microphysical Evolution of Convective Storms (NERC Standard Grant) University of Reading: Robin Hogan, Bob Plant, Thorwald Stein,

Slides:



Advertisements
Similar presentations
JMA Takayuki MATSUMURA (Forecast Department, JMA) C Asia Air Survey co., ltd New Forecast Technologies for Disaster Prevention and Mitigation 1.
Advertisements

© Crown copyright Met Office Met Office Experiences with Convection Permitting Models Humphrey Lean Reading, UK Nowcasting Workshop,
What’s quasi-equilibrium all about?
The University of Reading Helen Dacre AGU Dec 2008 Boundary Layer Ventilation by Convection and Coastal Processes Helen Dacre, Sue Gray, Stephen Belcher.
Laura Davies University of Reading Supervisors: Bob Plant, Steve Derbyshire (Met Office)
Vertical distribution of ash at source Time-height plots of mass concentration at Chilbolton. The height above the summit into which ash particles are.
Robin Hogan Alan Grant, Ewan O’Connor,
Ewan OConnor, Anthony Illingworth, Robin Hogan and the Cloudnet team Cloudnet.
Ewan OConnor, Robin Hogan, Anthony Illingworth Drizzle comparisons.
Dynamical and Microphysical Evolution of Convective Storms (DYMECS) University: Robin Hogan, Bob Plant, Thorwald Stein, Kirsty Hanley, John Nicol Met Office:
DYnamical and Microphysical Evolution of Convective Storms Thorwald Stein, Robin Hogan, John Nicol DYMECS.
Ewan OConnor, Robin Hogan, Anthony Illingworth, Nicolas Gaussiat Radar/lidar observations of boundary layer clouds.
Convection Initiative discussion points What info do parametrizations & 1.5-km forecasts need? –Initiation mechanism, time-resolved cell size & updraft.
Some questions on convection that could be addressed through another UK field program centered at Chilbolton Dan Kirshbaum 1.
Anthony Illingworth, + Robin Hogan, Ewan OConnor, U of Reading, UK and the CloudNET team (F, D, NL, S, Su). Reading: 19 Feb 08 – Meeting with Met office.
DYnamical and Microphysical Evolution of Convective Storms Thorwald Stein, Robin Hogan, John Nicol DYMECS.
Radar/lidar observations of boundary layer clouds
Robin Hogan, Julien Delanoë, Nicky Chalmers, Thorwald Stein, Anthony Illingworth University of Reading Evaluating and improving the representation of clouds.
DYMECS: Dynamical and Microphysical Evolution of Convective Storms (NERC Standard Grant) University of Reading: Robin Hogan, Bob Plant, Thorwald Stein,
Clouds processes and climate
Robin Hogan & Anthony Illingworth Department of Meteorology University of Reading UK Parameterizing ice cloud inhomogeneity and the overlap of inhomogeneities.
Robin Hogan Ewan OConnor Anthony Illingworth Department of Meteorology, University of Reading UK PDFs of humidity and cloud water content from Raman lidar.
Moisture Transport in Baroclinic Waves Ian Boutle a, Stephen Belcher a, Bob Plant a Bob Beare b, Andy Brown c 24 April 2014.
1 00/XXXX © Crown copyright Carol Roadnight, Peter Clark Met Office, JCMM Halliwell Representing convection in convective scale NWP models : An idealised.
DYnamical and Microphysical Evolution of Convective Storms Thorwald Stein, Robin Hogan, John Nicol DYMECS.
© University of Reading 2006www.reading.ac.uk Quasi-stationary Convective Storms in the UK: A Case Study Robert Warren Supervised by Bob Plant, Humphrey.
To perform statistical analyses of observations from dropsondes, microphysical imaging probes, and coordinated NOAA P-3 and NASA ER-2 Doppler radars To.
1 12/09/2002 © Crown copyright Modelling the high resolution structure of frontal rainbands Talk Outline Resolution dependence of extra-tropical cyclone.
ASSIMILATION of RADAR DATA at CONVECTIVE SCALES with the EnKF: PERFECT-MODEL EXPERIMENTS USING WRF / DART Altuğ Aksoy National Center for Atmospheric Research.
Initial 3D isotropic fractal field An initial fractal cloud-like field can be generated by essentially performing an inverse 3D Fourier Transform on the.
The DYMECS project A statistical approach for the evaluation of convective storms in high-resolution models Thorwald Stein, Robin Hogan, John Nicol, Robert.
Chris Birchfield Atmospheric Sciences, Spanish minor.
© Crown copyright Met Office Experiences with a 100m version of the Unified Model over an Urban Area Humphrey Lean Reading, UK WWOSC.
Click to add Text © Crown copyright Met Office Statistical Analysis of UK Convection and its representation in high resolution NWP Models Humphrey Lean,
WMO workshop, Hamburg, July, 2004 Some aspects of the STERAO case study simulated by Méso-NH by Jean-Pierre PINTY, Céline MARI Christelle BARTHE and Jean-Pierre.
DYMECS: Dynamical and Microphysical Evolution of Convective Storms (NERC Standard Grant) University of Reading: Robin Hogan, Bob Plant, Thorwald Stein,
The three-dimensional structure of convective storms Robin Hogan John Nicol Robert Plant Peter Clark Kirsty Hanley Carol Halliwell Humphrey Lean Thorwald.
Data assimilation, short-term forecast, and forecasting error
High-Resolution Simulation of Hurricane Bonnie (1998). Part II: Water Budget Braun, S. A., 2006: High-Resolution Simulation of Hurricane Bonnie (1998).
Schematic diagram of the convective system life cycle size evolution Lifetime=  (A e Initiation ) Mass flux or condensation process in the initiation.
© Crown copyright Met Office High resolution COPE simulations Kirsty Hanley, Humphrey Lean UK.
© Crown copyright Met Office High resolution COPE simulations Kirsty Hanley, Humphrey Lean UK.
Dual-Aircraft Investigation of the inner Core of Hurricane Norbert. Part Ⅲ : Water Budget Gamache, J. F., R. A. Houze, Jr., and F. D. Marks, Jr., 1993:
Evaluating forecasts of the evolution of the cloudy boundary layer using radar and lidar observations Andrew Barrett, Robin Hogan and Ewan O’Connor Submitted.
RICO Modeling Studies Group interests RICO data in support of studies.
Reading, 13 June 2013 Workshop on Convection in the high resolution Met Office models.
Evaluation of three-dimensional cloud structures in DYMECS Robin Hogan John Nicol Robert Plant Peter Clark Kirsty Hanley Carol Halliwell Humphrey Lean.
DYMECS The evolution of thunderstorms in the Met Office Unified Model Kirsty Hanley Robin Hogan John Nicol Robert Plant Thorwald Stein Emilie Carter Carol.
High-Resolution Simulation of Hurricane Bonnie (1998). Part II: Water Budget SCOTT A. BRAUN J. Atmos. Sci., 63,
Chasing April Showers Convective storms on Wednesday 11 th April, 2012 WCD Friday 4 th May, 2012 Thorwald Stein DYMECS research assistant *Not by running.
Doppler Lidar Winds & Tropical Cyclones Frank D. Marks AOML/Hurricane Research Division 7 February 2007.
© Crown copyright Met Office Convection Permitting Modelling Humphrey Lean et al. Reading, UK Leeds April 2014.
The evaluation of updrafts in the Unified Model using single-Doppler radar measurements Nicol JC a, Hogan RJ b, Stein THM b, Hanley KE c, Lean HW c, Plant.
Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes.
The three-dimensional structure of convective storms Robin Hogan John Nicol Robert Plant Peter Clark Kirsty Hanley Carol Halliwell Humphrey Lean Thorwald.
Characteristics of precipitating convection in the UM at Δx≈200m-2km
Development of Assimilation Methods for Polarimetric Radar Data
GEORGE H. BRYAN AND HUGH MORRISON
Seamless turbulence parametrization across model resolutions
The DYMECS project A statistical approach for the evaluation of convective storms in high-resolution models Thorwald Stein, Robin Hogan, John Nicol, Robert.
Convective Scale Modelling Humphrey Lean et. al
Radar/Surface Quantitative Precipitation Estimation
The three-dimensional structure of convective storms
Group interests RICO data required
John Marsham and Steven Dobbie
CIRRUS IN LEM & LARGE-SCALE MODELS
Rita Roberts and Jim Wilson National Center for Atmospheric Research
Sensitivity of idealized squall-line simulations to the level of complexity used in two-moment bulk microphysics schemes. Speaker: Huan Chen Professor:
Group interests RICO data in support of studies
Case Study: Evaluation of PBL Depth in an Erroneous HRRR forecast for CI Keenan Eure.
Presentation transcript:

DYMECS: Dynamical and Microphysical Evolution of Convective Storms (NERC Standard Grant) University of Reading: Robin Hogan, Bob Plant, Thorwald Stein, Kirsty Hanley, John Nicol Met Office: Humphrey Lean, Carol Halliwell

The DYMECS approach: beyond case studies NIMROD radar network rainfall Track storms in real time and automatically scan Chilbolton radar Derive properties of hundreds of storms on ~40 days: Vertical velocity 3D structure Rain & hail Ice water content TKE & dissipation rate Evaluate these properties in model varying: Resolution Microphysics scheme Sub-grid turbulence parametrization

Nimrod radar1.5-km model 500-m model200-m model Kirsty Hanley

Nimrod radar1.5-km model 500-m model200-m model Kirsty Hanley Too many Too few

Storm size distribution Smagorinsky mixing length plays a key role in determining number of small storms 1.5-km model 500-m model Kirsty Hanley

20 April Aug m model best 500-m model best 200-m model best 1.5-km model best Kirsty Hanley

Vertical profile First 60% of storms by cloud- top height Next 30% Top 10% Thorwald Stein Ice density too low? Higher reflectivity core Observations 1.5-km model 1.5-km + graupel

Vertical profile First 60% of storms by cloud- top height Next 30% Top 10% Observations 200-m model 500-m model Thorwald Stein

Estimation of vertical velocities from continuity Vertical cross-sections (RHIs) are typically made at low elevations (e.g. < 10 °) Radial velocities provide accurate estimate of the horizontal winds Assume vertical winds are zero at the surface Working upwards, changes in horizontal winds at a given level increment the vertical wind up to that point Must account for density change with height John Nicol Key uncertainty in models is convective updraft intensity and spatial scale Can we estimate updrafts from Doppler wind sufficiently well to characterize the distribution of intensity and spatial scale?

Vertical wind (m/s) Retrieved vertical wind (m/s) Retrieval error (m/s) Reflectivity (dBZ) Horizontal wind (m/s) Estimating retrieval errors from the Unified Model John Nicol

dBZ u (m/s) w (m/s) 12:45 07 August :37 07 August 2011 John Nicol

Scientific and modelling questions What is magnitude and scale of convective updrafts? How do two observational methods compare to model at various resolutions? What model configurations lead to the best 3D storm structure and evolution, and why? How good are predictions of hail occurrence and turbulence? How is boundary-layer grey zone best treated at high resolution, and what is the role of the Smagorinsky length scale? Does BL scheme diffuse away gust fronts necessary to capture triggering of daughter cells and if so how can this be corrected? Can models distinguish single cells, multi-cell storms & squall lines, and the location of daughter cells formed by gust fronts? What are the characteristics common to quasi-stationary storms in the UK from the large DYMECS database? Can we diagnose parameters that should be used in convection schemes from observations?