Robin Hogan & Julien Delanoe

Slides:



Advertisements
Similar presentations
Estimation of clouds in atmospheric models Tomislava Vukicevic CIRA/CSU and PAOS/CU.
Advertisements

Fast lidar & radar multiple-scattering models for cloud retrievals Robin Hogan (University of Reading) Alessandro Battaglia (University of Bonn) How can.
Robin Hogan, Julien Delanoe and Nicola Pounder University of Reading Towards unified retrievals of clouds, precipitation and aerosols.
Synergistic cloud retrievals from radar, lidar and radiometers
Robin Hogan, Chris Westbrook University of Reading Lin Tian NASA Goddard Space Flight Center Phil Brown Met Office Why it is important that ice particles.
Radar/lidar/radiometer retrievals of ice clouds from the A-train
Lidar observations of mixed-phase clouds Robin Hogan, Anthony Illingworth, Ewan OConnor & Mukunda Dev Behera University of Reading UK Overview Enhanced.
Quantifying sub-grid cloud structure and representing it GCMs
Robin Hogan, Chris Westbrook University of Reading, UK Alessandro Battaglia University of Leicester, UK Fast forward modelling of radar and lidar depolarization.
Ewan OConnor, Robin Hogan, Anthony Illingworth Drizzle comparisons.
Proposed new uses for the Ceilometer Network
How to distinguish rain from hail using radar: A cunning, variational method Robin Hogan Last Minute Productions Inc.
Anthony Illingworth, + Robin Hogan, Ewan OConnor, U of Reading, UK and the CloudNET team (F, D, NL, S, Su). Reading: 19 Feb 08 – Meeting with Met office.
Radar/lidar observations of boundary layer clouds
Robin Hogan, Julien Delanoë, Nicky Chalmers, Thorwald Stein, Anthony Illingworth University of Reading Evaluating and improving the representation of clouds.
Radar & lidar observations of clouds UWERN Cloud systems and Orography meeting Robin Hogan University of Reading, UK 1.Current and future Chilbolton capabilities.
Robin Hogan, Malcolm Brooks, Anthony Illingworth
Joint ECMWF-University meeting on interpreting data from spaceborne radar and lidar: AGENDA 09:30 Introduction University of Reading activities 09:35 Robin.
Robin Hogan Julien Delanoë Nicola Pounder Chris Westbrook
Modelling radar and lidar multiple scattering Robin Hogan
Blind tests of radar/lidar retrievals: Assessment of errors in terms of radiative flux profiles Malcolm Brooks Robin Hogan and Anthony Illingworth David.
Robin Hogan Anthony Illingworth Ewan OConnor Nicolas Gaussiat Malcolm Brooks University of Reading Cloudnet products available from Chilbolton.
Towards “unified” retrievals of cloud, precipitation and aerosol from combined radar, lidar and radiometer observations Robin Hogan, Julien Delanoë, Nicola.
Robin Hogan Department of Meteorology University of Reading Cloud and Climate Studies using the Chilbolton Observatory.
Robin Hogan, Richard Allan, Nicky Chalmers, Thorwald Stein, Julien Delanoë University of Reading How accurate are the radiative properties of ice clouds.
Robin Hogan Julien Delanoe Department of Meteorology, University of Reading, UK Towards unified radar/lidar/radiometer retrievals for cloud radiation studies.
Use of ground-based radar and lidar to evaluate model clouds
CloudSat! On 28 th April the first spaceborne cloud radar was launched It joins Aqua: MODIS, CERES, AIRS, AMSU radiometers.
Robin Hogan & Anthony Illingworth Department of Meteorology University of Reading UK Parameterizing ice cloud inhomogeneity and the overlap of inhomogeneities.
Robin Hogan Ewan OConnor Anthony Illingworth Department of Meteorology, University of Reading UK PDFs of humidity and cloud water content from Raman lidar.
Robin Hogan Julien Delanoe University of Reading Remote sensing of ice clouds from space.
Robin Hogan A variational scheme for retrieving rainfall rate and hail intensity.
Variational methods for retrieving cloud, rain and hail properties combining radar, lidar and radiometers Robin Hogan Julien Delanoe Department of Meteorology,
Variational cloud retrievals from radar, lidar and radiometers
What can we learn about clouds and their representation in models from the synergy of radar and lidar observations? Robin Hogan, Julien Delanoë, Nicky.
Modelling radar and lidar multiple scattering Modelling radar and lidar multiple scattering Robin Hogan The CloudSat radar and the Calipso lidar were launched.
Variational methods for retrieving cloud, rain and hail properties combining radar, lidar and radiometers Robin Hogan Julien Delanoe Department of Meteorology,
Enhancement of Satellite-based Precipitation Estimates using the Information from the Proposed Advanced Baseline Imager (ABI) Part II: Drizzle Detection.
Cloud Radar in Space: CloudSat While TRMM has been a successful precipitation radar, its dBZ minimum detectable signal does not allow views of light.
A Methodology for Simultaneous Retrieval of Ice and Liquid Water Cloud Properties O. Sourdeval 1, L. C.-Labonnote 2, A. J. Baran 3, G. Brogniez 2 1 – Institute.
Exploiting multiple scattering in CALIPSO measurements to retrieve liquid cloud properties Nicola Pounder, Robin Hogan, Lee Hawkness-Smith, Andrew Barrett.
3D Radiative Transfer in Cloudy Atmospheres: Diffusion Approximation and Monte Carlo Simulation for Thermal Emission K. N. Liou, Y. Chen, and Y. Gu Department.
TRMM Tropical Rainfall Measurement (Mission). Why TRMM? n Tropical Rainfall Measuring Mission (TRMM) is a joint US-Japan study initiated in 1997 to study.
EarthCARE: The next step forward in global measurements of clouds, aerosols, precipitation & radiation Robin Hogan ECMWF & University of Reading With input.
ESA Explorer mission EarthCARE: Earth Clouds, Aerosols and Radiation Explorer Joint ESA/JAXA mission Launch 2016 Budget 700 MEuro.
1. The problem of mixed-phase clouds All models except DWD underestimate mid-level cloud –Some have separate “radiatively inactive” snow (ECMWF, DWD) –Met.
Remote sensing of Stratocumulus using radar/lidar synergy Ewan O’Connor, Anthony Illingworth & Robin Hogan University of Reading.
Lee Smith Anthony Illingworth
Initial 3D isotropic fractal field An initial fractal cloud-like field can be generated by essentially performing an inverse 3D Fourier Transform on the.
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan.
Direct Radiative Effect of aerosols over clouds and clear skies determined using CALIPSO and the A-Train Robert Wood with Duli Chand, Tad Anderson, Bob.
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan.
EarthCARE and snow Robin Hogan University of Reading.
Determination of the optical thickness and effective radius from reflected solar radiation measurements David Painemal MPO531.
The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology Southern Ocean cloud biases in ACCESS.
Optical properties Satellite observation ? T,H 2 O… From dust microphysical properties to dust hyperspectral infrared remote sensing Clémence Pierangelo.
Improvement of Cold Season Land Precipitation Retrievals Through The Use of Field Campaign Data and High Frequency Microwave Radiative Transfer Model IPWG.
Use of Solar Reflectance Hyperspectral Data for Cloud Base Retrieval Andrew Heidinger, NOAA/NESDIS/ORA Washington D.C, USA Outline " Physical basis for.
An Introduction to Optimal Estimation Theory Chris O´Dell AT652 Fall 2013.
Cloud and precipitation best estimate… …and things I don’t know that I want to know Robin Hogan University of Reading.
Retrieval of Cloud Phase and Ice Crystal Habit From Satellite Data Sally McFarlane, Roger Marchand*, and Thomas Ackerman Pacific Northwest National Laboratory.
Challenges and Strategies for Combined Active/Passive Precipitation Retrievals S. Joseph Munchak 1, W. S. Olson 1,2, M. Grecu 1,3 1: NASA Goddard Space.
Visible optical depth,  Optically thicker clouds correlate with colder tops Ship tracks Note, retrievals done on cloudy pixels which are spatially uniform.
Satellites Storm “Since the early 1960s, virtually all areas of the atmospheric sciences have been revolutionized by the development and application of.
Caroline Poulsen ATSR-2 Group Cloud parameters estimated by variational analysis of visible and infrared measurements from ATSR-2 Caroline Poulsen, Richard.
UCLA Vector Radiative Transfer Models for Application to Satellite Data Assimilation K. N. Liou, S. C. Ou, Y. Takano and Q. Yue Department of Atmospheric.
12 April 2013 VARSY progress meeting Robin Hogan and Nicola Pounder (University of Reading)
UNIVERSITY OF BASILICATA CNR-IMAA (Consiglio Nazionale delle Ricerche Istituto di Metodologie per l’Analisi Ambientale) Tito Scalo (PZ) Analysis and interpretation.
Developing Winter Precipitation Algorithm over Land from Satellite Microwave and C3VP Field Campaign Observations Fifth Workshop of the International Precipitation.
Slide 1 Robin Hogan, APRIL-CLARA-DORSY meeting 2016 ©ECMWF Towards a fast shortwave radiance forward model for exploiting MSI measurements Robin Hogan.
Presentation transcript:

Robin Hogan & Julien Delanoe A variational cloud retrieval scheme combining radar, lidar and radiometer observations Robin Hogan & Julien Delanoe University of Reading, UK . The CloudSat radar and the Calipso lidar were launched on 28th April 2006 They join Aqua, hosting the MODIS, CERES, AIRS and AMSU radiometers An opportunity to tackle questions concerning role of clouds in climate Need to combine all these observations to get an optimum estimate of global cloud properties

7 June 2006 Calipso lidar CloudSat radar Molecular scattering Aerosol from China? Cirrus Mixed-phase altocumulus Drizzling stratocumulus Non-drizzling stratocumulus 5500 km Rain Japan Eastern Russia East China Sea Sea of Japan

Motivation Why combine radar, lidar and radiometers? Radar ZD6, lidar b’D2 so the combination provides particle size Radiances ensure that the retrieved profiles can be used for radiative transfer studies Some limitations of existing radar/lidar ice retrieval schemes (Donovan et al. 2000, Tinel et al. 2005, Mitrescu et al. 2005) Only work in regions of cloud detected by both radar and lidar Noise in measurements results in noise in the retrieved variables Eloranta’s lidar multiple-scattering model is too slow to take to greater than 3rd or 4th order scattering Other clouds in the profile are not included, e.g. liquid water clouds Difficult to make use of other measurements, e.g. passive radiances Difficult to also make use of lidar molecular scattering beyond the cloud as an optical depth constraint Some methods need the unknown lidar ratio to be specified A “unified” variational scheme can solve all of these problems

Formulation of variational scheme Observation vector • State vector Elements may be missing Ice visible extinction coefficient profile Ice normalized number conc. profile Extinction/backscatter ratio for ice Attenuated lidar backscatter profile Radar reflectivity factor profile (on different grid) Aerosol visible extinction coefficient profile Liquid water path and number conc. for each liquid layer Visible optical depth Infrared radiance Radiance difference

xi+1= xi+A-1{HTR-1[y-H(xi)] Solution method New ray of data Locate cloud with radar & lidar Define elements of x First guess of x Find x that minimizes a cost function J of the form J = deviation of x from a-priori + deviation of observations from forward model + curvature of extinction profile Forward model Predict measurements y from state vector x using forward model H(x) Also predict the Jacobian H Gauss-Newton iteration step Predict new state vector: xi+1= xi+A-1{HTR-1[y-H(xi)] -B-1(xi-xa)-Txi} where the Hessian is A=HTR-1H+B-1+T Has solution converged? 2 convergence test No Yes Calculate error in retrieval Proceed to next ray

Radar forward model and a priori Create lookup tables Gamma size distributions Choose mass-area-size relationships Mie theory for 94-GHz reflectivity Define normalized number concentration parameter “The N0 that an exponential distribution would have with same IWC and D0 as actual distribution” Forward model predicts Z from extinction and N0 Effective radius from lookup table N0 has strong T dependence Use Field et al. power-law as a-priori When no lidar signal, retrieval relaxes to one based on Z and T (Liu and Illingworth 2000, Hogan et al. 2006) Field et al. (2005)

Lidar forward model: multiple scattering 90-m footprint of Calipso means that multiple scattering is a problem Eloranta’s (1998) model O (N m/m !) efficient for N points in profile and m-order scattering Too expensive to take to more than 3rd or 4th order in retrieval (not enough) New method: treats third and higher orders together O (N 2) efficient As accurate as Eloranta when taken to ~6th order 3-4 orders of magnitude faster for N =50 (~ 0.1 ms) Narrow field-of-view: forward scattered photons escape Wide field-of-view: forward scattered photons may be returned Ice cloud Molecules Liquid cloud Aerosol Hogan (2006, Applied Optics, in press). Code: www.met.rdg.ac.uk/clouds

Radiance forward model MODIS solar channels provide an estimate of optical depth Only very weakly dependent on vertical location of cloud so we simply use the MODIS optical depth product as a constraint Only available in daylight MODIS, Calipso and SEVIRI each have 3 thermal infrared channels in atmospheric window region Radiance depends on vertical distribution of microphysical properties Single channel: information on extinction near cloud top Pair of channels: ice particle size information near cloud top Radiance model uses the 2-stream source function method Efficient yet sufficiently accurate method that includes scattering Provides important constraint for ice clouds detected only by lidar Ice single-scatter properties from Anthony Baran’s aggregate model Correlated-k-distribution for gaseous absorption (from David Donovan)

Ice cloud: non-variational retrieval Aircraft-simulated profiles with noise (from Hogan et al. (2006) Donovan et al. (2000) Observations State variables Derived variables Optical depth 13.9; lidar sees to 3.6 Retrieval is accurate but not perfectly stable where lidar loses signal Donovan et al. (2000) algorithm can only be applied where both lidar and radar have signal

Variational radar/lidar retrieval Observations State variables Derived variables Lidar noise matched by retrieval Noise feeds through to other variables Noise in lidar backscatter feeds through to retrieved extinction

…add smoothness constraint Observations State variables Derived variables Retrieval reverts to a-priori N0 Extinction and IWC too low in radar-only region Smoothness constraint: add a term to cost function to penalize curvature in the solution (J’ = l Si d2ai/dz2)

…add a-priori error correlation Observations State variables Derived variables Vertical correlation of error in N0 Extinction and IWC now more accurate Use B (the a priori error covariance matrix) to smooth the N0 information in the vertical

…add visible optical depth constraint Observations State variables Derived variables Slight refinement to extinction and IWC Integrated extinction now constrained by the MODIS-derived visible optical depth

…add infrared radiances Observations State variables Derived variables Poorer fit to Z at cloud top: information here now from radiances Better fit to IWC and re at cloud top

Radar-only retrieval Observations State variables Derived variables

Radar plus optical depth Observations State variables Derived variables

Radar, optical depth and IR radiances Observations State variables Derived variables

Ground-based example Observed 94-GHz radar reflectivity Observed 905-nm lidar backscatter Forward model radar reflectivity Forward model lidar backscatter Lidar fails to penetrate deep ice cloud

Retrieved extinction coefficient a Retrieved effective radius re Retrieved normalized number conc. parameter N0 Error in retrieved extinction Da Radar only: retrieval tends towards a-priori Lower error in regions with both radar and lidar

Conclusions and ongoing work A variational method has been described for combining radar, lidar, radiometers and any other relevant measurements, to retrieve profiles of cloud microphysical properties In progress: Testing radiance part of retrieval using geostationary-satellite radiances from Meteosat/SEVIRI above ground-based radar & lidar Add capability to retrieve properties of liquid-water layers, drizzle and aerosol Then apply to A-train data! CloudSat observations over the UK on 18th June 2006 Scotland England Lake district Isle of Wight France

13.10 UTC June 18th MODIS RGB composite France Scotland England Lake district Isle of Wight France 13.10 UTC June 18th

13.10 UTC June 18th (Sunday) MODIS Infrared window France Scotland Lake district Isle of Wight Scotland England France

13.10 UTC June 18th (Sunday) Met Office rain radar network France Lake district Isle of Wight Scotland England France

Sd sdf An island of Indonesia Banda Sea

Antarctic ice sheet Southern Ocean