Page 1 Review 09/2010 MEIC Ion Linac and Pre-Booster Design Bela Erdelyi Department of Physics, Northern Illinois University, and Physics Division, Argonne.

Slides:



Advertisements
Similar presentations
Ion Accelerator Complex for MEIC January 28, 2010.
Advertisements

Thomas Roser Snowmass 2001 June 30 - July 21, MW AGS proton driver (M.J. Brennan, I. Marneris, T. Roser, A.G. Ruggiero, D. Trbojevic, N. Tsoupas,
(ISS) Topics Studied at RAL G H Rees, RAL, UK. ISS Work Areas 1. Bunch train patterns for the acceleration and storage of μ ± beams. 2. A 50Hz, 1.2 MW,
Kevin Jordan Beam Diagnostics Collaboration Meeting 3/18/15 MEIC Design Overview.
100 MeV- 1 GeV Proton Synchrotron for Indian Spallation Neutron Source Gurnam Singh Beam Dynamics Section CAT, Indore CAT-KEK-Sokendai School on Spallation.
3 GeV,1.2 MW, Booster for Proton Driver G H Rees, RAL.
Page 1 Workshop 01/2011 The Accumulator/Pre-Booster Bela Erdelyi Department of Physics, Northern Illinois University, and Physics Division, Argonne National.
Ion Polarization Control in MEIC Rings Using Small Magnetic Fields Integrals. PSTP 13 V.S. Morozov et al., Ion Polarization Control in MEIC Rings Using.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility 1 Alex Bogacz MEIC Ion Injector Complex  Present Status.
1 Status of EMMA Shinji Machida CCLRC/RAL/ASTeC 23 April, ffag/machida_ ppt & pdf.
EDM2001 Workshop May 14-15, 2001 AGS Intensity Upgrade (J.M. Brennan, I. Marneris, T. Roser, A.G. Ruggiero, D. Trbojevic, N. Tsoupas, S.Y. Zhang) Proton.
Ion Collider Ring Design V.S. Morozov for MEIC study group MEIC Collaboration Meeting, JLab October 5-7, 2015.
CASA Collider Design Review Retreat HERA The Only Lepton-Hadron Collider Ever Been Built Worldwide Yuhong Zhang February 24, 2010.
Design of an Isochronous FFAG Ring for Acceleration of Muons G.H. Rees RAL, UK.
BEAM TRANSFER CHANNELS, BEAM TRANSFER CHANNELS, INJECTION AND EXTRACTION SYSTEMS OF NICA ACCELERATOR COMPLEX Tuzikov A., JINR, Dubna, Russia.
PHYSICAL PROJECT OF BOOSTER FOR NICA ACCELERATOR COMPLEX Alexey Tuzikov, Nikolay Agapov, Andrey Butenko, Alexey Eliseev, Viktor Karpinsky, Hamlet Khodzhibagiyan,
ILC Damping Ring Alternative Lattice Design ( Modified FODO ) ** Yi-Peng Sun *,1,2, Jie Gao 1, Zhi-Yu Guo 2 Wei-Shi Wan 3 1 Institute of High Energy Physics,
Design Optimization of MEIC Ion Linac & Pre-Booster B. Mustapha, Z. Conway, B. Erdelyi and P. Ostroumov ANL & NIU MEIC Collaboration Meeting JLab, October.
New Gantry Idea for H + /C 6+ Therapy G H Rees, ASTeC, RAL 4 th September, 2008.
Preliminary MEIC Ion Beam Formation Scheme Jiquan Guo for the MEIC design study team Oct. 5,
1 NICA Project Report of The Group I S.L.Bogomolov, A.V.Butenko, A.V.Efremov, E.D.Donets, I.N.Meshkov, V.A.Mikhailov, A.O.Sidorin, A.V.Smirnov, Round Table.
The Introduction to CSNS Accelerators Oct. 5, 2010 Sheng Wang AP group, Accelerator Centre,IHEP, CAS.
Hybrid Synchrotron Arc: 2 Dipoles per Half Cell J. Scott Berg Advanced Accelerator Group Meeting 28 July 2011.
Present MEIC IR Design Status Vasiliy Morozov, Yaroslav Derbenev MEIC Detector and IR Design Mini-Workshop, October 31, 2011.
Optics considerations for PS2 October 4 th, 2007 CARE-HHH-APD BEAM’07 W. Bartmann, M. Benedikt, C. Carli, B. Goddard, S. Hancock, J.M. Jowett, A. Koschik,
Optics solutions for the PS2 ring February 11 th, 2008 LIS Section Meeting Y. Papaphilippou.
FFAG Studies at BNL Alessandro G. Ruggiero Brookhaven National Laboratory FFAG’06 - KURRI, Osaka, Japan - November 6-10, 2006.
Optics considerations for PS2
BEAM TRANSFER CHANNELS, INJECTION AND EXTRACTION SYSTEMS
J-PARC main ring lattice An overview
A.Lachaize CNRS/IN2P3 IPN Orsay
Progress in the Multi-Ion Injector Linac Design
Deuteron Polarization in MEIC
Large Booster and Collider Ring
Isochronous, FFAG Rings with Insertions for Rapid Muon or Electron Acceleration G H Rees, RAL.
A. Plastun¹, B. Mustapha, Z. Conway and P. Ostroumov
Preservation and Control of Ion Polarization in MEIC
CASA Collider Design Review Retreat Other Electron-Ion Colliders: eRHIC, ENC & LHeC Yuhong Zhang February 24, 2010.
CEPC Injector Damping Ring
LHC (SSC) Byung Yunn CASA.
Pulsed Ion Linac for EIC
Collider Ring Optics & Related Issues
JLEIC Collaboration Meeting Spring 2017
Optics solutions for the PS2 ring
MEBT1&2 design study for C-ADS
Negative Momentum Compaction lattice options for PS2
Accelerator and Interaction Region
Towards an NMC Ring: Dispersion suppressor & long straight section
Status of the JLEIC Injector Linac Design
Optics considerations for PS2
Update on Alternative Design of jleic ion injector Complex B
Negative Momentum Compaction lattice options for PS2
Update on ERL Cooler Design Studies
JLEIC 200 GeV Ion Injector Chain and Bunch Formation
Update on MEIC Activities at ANL
Main Design Parameters RHIC Magnets for MEIC Ion Collider Ring
Yu.N. Filatov, A.M. Kondratenko, M.A. Kondratenko
Ion Collider Ring Using Superferric Magnets
Multi-Ion Injector Linac Design – Progress Summary
Fanglei Lin, Yuhong Zhang JLEIC R&D Meeting, March 10, 2016
Alternative Ion Injector Design
Update on JLEIC Electron Ring Design
Fanglei Lin MEIC R&D Meeting, JLab, July 16, 2015
MEIC Alternative Design Part V
Possibility of MEIC Arc Cell Using PEP-II Dipole
Fanglei Lin JLEIC R&D Meeting, August 4, 2016
MEIC R&D Meeting, JLab, August 20, 2014
RF system for MEIC Ion Linac: SRF and Warm Options
An Alternative Ion Complex Agenda /some preliminary estimations/
3.2 km FODO lattice for 10 Hz operation (DMC4)
Presentation transcript:

Page 1 Review 09/2010 MEIC Ion Linac and Pre-Booster Design Bela Erdelyi Department of Physics, Northern Illinois University, and Physics Division, Argonne National Laboratory

Page 2 Review 09/2010 Acknowledgements Joint Work of Bela Erdelyi (NIU/ANL) Shashikant Manikonda (ANL) Peter Ostroumov (ANL) Sumana Abeyratne (NIU student) With assistance from JLab staff (Y. Derbenev, Y. Zhang, G. Krafft, etc.) Joint Work of Bela Erdelyi (NIU/ANL) Shashikant Manikonda (ANL) Peter Ostroumov (ANL) Sumana Abeyratne (NIU student) With assistance from JLab staff (Y. Derbenev, Y. Zhang, G. Krafft, etc.)

Page 3 Review 09/2010 ELIC Conceptual Layout Three compact rings: 3 to 11 GeV electron Up to 12 GeV/c proton (warm) Up to 60 GeV/c proton (cold)

Page 4 Review 09/2010 Ion Linac for ELIC Pulsed linac Short Normal Conducting section: RFQ and IH structure Followed by Superconducting section that contains Stripper for heavy ions at 12 MeV/u

Page 5 Review 09/2010 Basic Parameters of the Linac Linac layout Normal conductingSuperconducting 80

Page 6 Review 09/2010 Superconducting Cavities Developed for the RIA/FRIB project QWR HWR DSR

Page 7 Review 09/2010 Voltage Gain per Cavity for Protons and Lead Ions

Page 8 Review 09/2010 QWR and HWR production at ANL QWR, f=109 MHz,  =0.15 HWR, f=172 MHz,  =0.26

Page 9 Review 09/2010 Cryomodule assembly at ANL beam

Page 10 Review 09/2010 Accumulator/Pre-Booster Concept Purpose: Inject from linac Accumulate ions Accelerate them Extract and send to large booster Concepts: Figure-8 shape for ease of spin transport, manipulation and preservation Modular design, with (quasi)independent module design optimization FODO arcs for simplicity and ease of implementation of optics correction schemes No dispersion suppressors Injection insertion Doublet/Triplet straights for long dispersion-less drifts Matching/tuning modules in between

Page 11 Review 09/2010 Constraints Figure-8 shaped; circumference ~250 m Maximum bending field: 1.5 T Maximum quadrupole gradient: 20 T/m Momentum compaction smaller than 1/25 Maximum beta functions less than 35 m Maximum full beam size less than 2.5 cm and 1 cm vertically in dipoles 5m m long dispersion-less sections for RF cavities, electron cooling collimation and extraction Sizable (normalized) dispersion for/at injection Working point chosen such that tune footprint does not cross low order resonances (tunability)

Page 12 Review 09/2010 Injection Protons (and light ions) Stripping injection Heavy ions Repeated multi-turn injection Transverse (horizontal and possibly also vertical) and longitudinal painting Electron cooling for stacking/accumulation

Page 13 Review 09/2010 Heavy-Ion Injection

Page 14 Review 09/2010 Acceleration h=1 RF swing necessary is [0.4,2] MHz 15 kV per cavity 50kV/turn => 3-4 cavities turns for 200MeV -> 3 GeV Less than 80 ms acceleration time

Page 15 Review 09/2010 Extraction Conventional fast extraction

Page 16 Review 09/2010 Layout ARC 1 Injection Insertion section ARC 2 Non dispersive section 1 ARC 3 Non dispersive section 2 RF cavity Electron Cooling Solenoid for Electron Cooling Extraction Collimation Beam from LINAC

Page 17 Review 09/2010 Linear Optics Injection Arc 1 Straight 1 Arc 3 Straight 2 Arc 2

Page 18 Review 09/2010 Optical modules ARC1&2 FODOARC3 FODO STRAIGHT TRIPLET INJECTION INSERT

Page 19 Review 09/2010 Tunability

Page 20 Review 09/2010 Main Parameters UnitsValue 1Circumferencem302 2Angle at crossingdeg44 3Number of dispersive FODO cells (Type I)6 4Number of dispersive FODO cells (Type II)8 5Number of triplet cells18 6Number of matching cells (2 types)4 7Minimum drift length between magnetscm50 8Drift length in the injection insertionm5.0 9Drift lengths between triplets (for RF, extraction, collimation and electron cooling)m5.3 10Beta maximum in Xm33 11Beta maximum in Ym36 12Maximum beam sizecm2.3 12Maximum vertical beam size in the dipole magnetscm0.6 13Maximum dispersion (x|delta_KE)m3.3 14Normalized dispersion value at injection insertm½m½ Tune in X Tune in Y Gamma of particle Gamma at transition energy5.6 19Momentum compaction3.2E-2

Page 21 Review 09/2010 Magnets Quantity ParametersUnitsValue 1Quadrupole Magnets113 Lengthcm40 Half aperturecm5 Maximum pole tip fieldT1.5 Minimum pole tip fieldT0.15 2Dipole Magnets (Type I)16 StrengthT1.41 Radiusm9.0 Vertical aperturecm3.0 Angledeg11.6 Lengthm1.83 3Dipole Magnets (Type II)18 StrengthT1.41 Radiusm9.0 Vertical aperturecm3.0 Angledeg14.0 Lengthm2.19

Page 22 Review 09/2010 Summary and Work in Progress Presented a preliminary design of the linac and the accumulator/pre-booster, which satisfy the constraints while providing superior performance Fine tuning first order optics Space charge limits on current and emittance Spin and spin-orbit resonance analysis Dynamic aperture estimation Presented a preliminary design of the linac and the accumulator/pre-booster, which satisfy the constraints while providing superior performance Fine tuning first order optics Space charge limits on current and emittance Spin and spin-orbit resonance analysis Dynamic aperture estimation

Page 23 Review 09/2010 BACKUP SLIDES

Page 24 Review 09/2010 Cavity subsystems 4 kW capacitive coupler Adjustable 1 cold/warm windows Pneumatic slow tuner Piezoelectric tuner (PZT) ~90 Hz window 35  m displacement beam PZT has been tested with excellent performance

Page 25 Review 09/2010 Proton beam Setting 1: Mass= 1, Charge= 1, Kinetic Energy = 3000 MeV Electric rigidity (χ e ) = 3.71E+9 V Magnetic Rigidity (χ m ) = Tm Proton beam Emittance in x and y = 16 π mm·mrad x=± 4mm y=± 4mm, a=±4mrad b = ±4mrad Kinetic Energy Dispersion (δKE/KE )= 1E-4 Setting 2: Mass= 1, Charge= 1, Kinetic Energy = 200 MeV Electric rigidity (χ e ) = 3.68E+8 V Magnetic Rigidity (χ m ) = 2.14 Tm Proton beam Emittance in x and y = 140π mm·mrad x=± 4mm y=± 4mm, a=±35mrad b = ±35mrad Kinetic Energy Dispersion (δKE/KE )= 1E July,2010

Page 26 Review 09/2010 Main Parameters (1) Energy range Protons: from 200 MeV (β=0.57, injection to 3 GeV (β=0.97, γ=4.2) at extraction Lead ions: if fully stripped, from 80 MeV/u (β=0.39, injection to 1.18 GeV/u (β=0.9, extraction Circumference An integer multiple of it must be ~ m => ~ m

Page 27 Review 09/2010 Main parameters (2) Revolution times/frequencies injection: { μs, MHz} if C=150m { μs, MHz} if C=300m extraction: { μs, MHz} if C=150m { μs, MHz} if C=300m injection: { μs, MHz} if C=150m { μs, MHz} if C=300m extraction: { μs, MHz} if C=150m { μs, MHz} if C=300m If acceleration done with h=1 RF swing necessary is [0.38,1.95] MHz

Page 28 Review 09/2010 Cooling times Assuming: 3 m long cooling section 300 mA electron current 2.5 cm beam radius ± 5 mrad beam divergence ±0.004 momentum dispersion Cooling for 3 time constants  Transverse cooling time: ~ 130 ms  Longitudinal cooling time: ~ 67 ms Cooling electron injection: { MeV, γ= extraction: { MeV, γ= }

Page 29 Review 09/2010 Lead Charge injection Q (0) Q (1) Q (2) Q (3) Q (4) 0 4% 70% 22% extraction Q (0) Q (1) 83% 17%

Page 30 Review 09/2010 Intensities Protons If assuming 1A current, depending on circumference and injection/extraction: => N_p ~ [ 3, 11 ] x Lead ions Under similar circumstances: => N_Pb ~ N_p / Q

Page 31 Review 09/2010 Pre-Booster Cycle Time Assuming 5x10 10 lead ions need to be accumulated One linac pulse delivers ~2x10 8 ions ~50% efficiency) 50 linac pulses, 250 μs each Total time = 50x 250 μs +50x130 ms+2x80 ms ≈ 7 s

Page 32 Review 09/ July,2010 Shorter Version Layout

Page 33 Review 09/ July,2010 Shorter Version Lattice functions

Page 34 Review 09/ July,2010 UnitsValue 1Total lengthm254 2Angle at crossingdeg60 3Number of dispersive FODO cells (Type I)6 4Number of dispersive FODO cells (Type II)8 5Number of triplet cells12 6Number of matching cells4 7Minimum drift length between magnetscm50 8Drift lengths in the insertion regionm5.0 9Drift lengths between triplets (for RF, collimation and electron cooling)m5.0 10Beta maximum in Xm32 11Beta maximum in Ym32 12Maximum beam sizecm2.5 12Maximum beam size in the dipole magnetscm0.6 13Maximum Dispersion (x|delta_KE)2.5 14Normalized dispersion value at injection (x|δ_KE)/√β Tune in X Tune in Y Gamma of particle Gamma at Transition Energy4.7 19Momentum compaction factor4.4E-2 Shorter Version Parameters

Page 35 Review 09/2010 Quantity ParametersUnitsValue 1Quadrupole Magnet95 Lengthcm40 Half aperturecm5 Maximum pole tip field T1.5 Minimum pole tip field T0.16 2Dipole Magnet (Type I)12 StrengthT1.41 Radiusm9 Vertical aperturecm3 Angledeg14 Lengthm2.19 3Dipole Magnet (Type II)18 StrengthT1.41 Radiusm9 Vertical aperturecm3 Angledeg12.9 Lengthm2.04 4Dipole Magnet (Type III)18 StrengthT1.41 Radiusm9 Vertical aperturecm3 Angledeg14.9 Lengthm2.35 Shorter Version Magnets

Page 36 Review 09/2010 New Layout with 5 quads in each matching section (302m)