THERMODYNAMICS OF MOLECULAR RECOGNITION AND DESIGN OF SUPRAMOLECULAR ARCHITECTURES ON THE BASIS OF CALIXARENES A.I.Konovalov, V.V.Gorbatchuk, I.S.Antipin.

Slides:



Advertisements
Similar presentations
Chemistry 101 Chapter 9 Chemical Quantities.
Advertisements

Ion Affinity of a Model Macrocyclic Tetraamide: an Ab Initio Study Rubén D. Parra, Ph.D Department of Chemistry DePaul University, Chicago.
Chapter 9 Chemical Quantities Chemistry B2A Formula and Molecule Ionic & covalent compounds  Formulaformula of NaCl Covalent compounds  Molecule molecule.
TitleTitle SUPRAMOLECULAR MODELS OF SOLID PROTEINS V.V. Gorbatchuk, M.A.Ziganshin, N.A.Mironov, I.S.Antipin, B.N.Solomonov, A.I.Konovalov Department of.
A force that occurs between molecules is called:
Introduction to Organic Molecules & Functional Groups
Part 3ii Substitution Reactions: Solvent MeOH DMSO.
Bonding in compounds Overview Learn how the elements can form bonds in compounds.
Intermolecular Forces (IMFs)
Liquids and Solutions Ch. 14 and 15.
Carbon and the Molecular Diversity of Life
CVEN 4424 Environmental Organic Chemistry
Daniel L. Reger Scott R. Goode David W. Ball Chapter 12 Solutions.
Learning objective 2.16: The student is able to explain the properties (phase, vapor pressure, viscosity, etc.) of small and large molecular compounds.
Organic Chemistry Chapter 24 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Energy Requirements for changing state: In ice the water molecules are held together by strong intermolecular forces. The energy required to melt 1 gram.
Intermolecular Forces Intermolecular forces are attractive forces between molecules. (Example: water molecule to water molecule) Intramolecular.
Intermolecular Forces. Bonding Ionic Covalent Polar covalent.
Polarity of Bonds and Molecules Mrs. Huelin Chemistry April 24, 2012.
Thermodynamics Chapter st Law of Thermodynamics Energy is conserved.  E = q + w.
Phase Equilibria Melting-Freezing Evaporation-Condensation Sublimation-Condensation Phase transition.
Topic 1:Chemicals of life 1.Molecules and Atoms 2.Water 3.Carbon and Other elements.
1 Chapter 4 Carbon and the Molecular Diversity of Life.
Chem Introductory Inorganic Chemistry What is Inorganic Chemistry?
CHAPTER 11 - INTERMOLECULAR FORCES VERSION 5. The States of Matter.
Intermolecular Forces:
18.1 The standard entahlpy change associated with breaking the bond in a diatomic molecule in the gas phase: N  N (g) > 2 N (g)  H [N  N] = +
Chapter 10 Liquids and Solids. Chapter 10 Table of Contents Copyright © Cengage Learning. All rights reserved Intermolecular Forces 10.2 The Liquid.
Phases of Matter Liquids, Solids (Crystals) & Solutions Colligative Properties Dr. Ron Rusay Intermolecular Forces I.
Chemical thermodynamics I. Medical Chemistry László Csanády Department of Medical Biochemistry.
Chemistry 122 Review Chapter 9. Organic Chemistry - Vocabulary Organic, cracking, hydrocarbon, refining, reforming, saturated, hydrogenation, aromatic,
University of Texas at AustinMichigan Technological University 1 Module 2: Evaluating Environmental Partitioning and Fate: Approaches based on chemical.
Intermolecular Forces © 2009, Prentice-Hall, Inc. Chapter 11.4 Energy of Phase Changes John D. Bookstaver St. Charles Community College Cottleville, MO.
A.E.Arbuzov Institute of Organic & Physical Chemistry, Kazan A.M.Butlerov Chemistry Institute of Kazan Federal University, Kazan Supramolecular chemistry.
1 Chapter 4 Carbon and the Molecular Diversity of Life.
Aromatics Prominent (strong) features: C-H stretch
Design and Synthesis of Calixarene Scaffolds Bearing Hydrogen Bond Motifs Farzad Fani-Pakdel and Jason R. Telford Department of Chemistry, University of.
Chem Introductory Inorganic Chemistry What is Inorganic Chemistry?
Chapter2. Some Thermodynamics Aspects of Intermolecular Forces Chapter2. Some Thermodynamics Aspects of Intermolecular Forces 한국과학기술원 화학과 계면화학 제 1 조 김동진.
Chapter 8 Honors Chemistry (partial) Covalent Bonding 1.
Solubility Equilibrium. Example 16.8 Calculating Molar Solubility from K sp Calculate the molar solubility of PbCl 2 in pure water. Begin by writing the.
FUNCTIONAL GROUPS. ……..an atom or bond……… or a group of atoms or bonds that is attached to one or more C atoms that has a…….. … characteristic chemical.
Learning objective 2.16: The student is able to explain the properties (phase, vapor pressure, viscosity, etc.) of small and large molecular compounds.
111 CHEM 344 Organic Chemistry Lab June 18 th 2008 Spectroscopy of Organic Compounds Lecture 3 –Infrared and Mass Spec Nick Hill.
Organic Chemistry Chapter 7.
Are there any other ways of estimating fusion enthalpies and melting temperatures? Mobile Order and Disorder Theory.
Spectroscopic and Theoretical Determination of Accurate CH/  Interaction Energies in Benzene-Hydrocarbon Clusters Asuka Fujii, Hiromasa Hayashi, Jae Woo.
Atom or group of atoms that gives a molecule “personality.” (Molecules with that group behave alike.) Functional Group.
Chemistry 101 : Chap. 19 Chemical Thermodynamics (1) Spontaneous Processes (2) Entropy and The Second Law of Thermodynamics (3) Molecular Interpretation.
 -  and CH-  interactions in the molecular nitrogen- and methane-pyridine complexes Department of Chemistry University of Alberta.
Chapter 4 Chemical Reactions Chemistry B11 Chemical Reactions Chemical change = Chemical reaction Substance(s) is used up (disappear) New substance(s)
Chemical Quantities Key Question How can you convert among the count, mass, and volume of something? Knowing how the count, mass, and volume of.
THERMODYNAMICS – ENTROPY AND FREE ENERGY 3A-1 (of 14) Thermodynamics studies the energy of a system, how much work a system could produce, and how to predict.
Chapter 12 Liquids, Solids, & Intermolecular Forces Chemistry 100.
CHEMISTRY 161 Chapter 4. CHEMICAL REACTIONS 2 HgO (s) → 2Hg (l) + O 2(g) aq 1. properties of solutions 2. reactions in solutions a) precipitation reactions.
FUNCTIONAL GROUPS IN ORGANIC COMPOUNDS. Naturally occurring organic compounds are found in plants, animals, and fossil fuels All of these have a plant.
学 术 报 告 报告名称: Functional Inorganic Materials: Molecular Recognition, Chiral Separation and Water Oxidation   报告人:Prof.Samar Kumar Das 时间: (周二)
A guide for A level students
GSFED Data & Result seni.
atomization: the process of breaking a molecule into
Chemistry B11 Chapter 5 Chemical Reactions.
Kinetics of reaction in solution
Electronic Spectroscopy Ultraviolet and visible
Intermolecular Forces and Liquids Chap. 12
Solutions College Chemistry.
Introduction Organic chemistry is the study of molecules that contain carbon Carbon is special because: - can form 4 strong covalent bonds - can bond with.
Carbon and the Molecular Diversity of Life
To learn about interactions among water molecules
Thermodynamics Heat of Formation.
Chapter 9 Chemical Bonding I: Lewis Theory
Presentation transcript:

THERMODYNAMICS OF MOLECULAR RECOGNITION AND DESIGN OF SUPRAMOLECULAR ARCHITECTURES ON THE BASIS OF CALIXARENES A.I.Konovalov, V.V.Gorbatchuk, I.S.Antipin A.E.Arbuzov Institute of Organic and Physical Chemistry, Kazan Kazan State University

Chemistry molecular supramolecular Covalent interactions: intramolecular binding Covalent interactions: intramolecular binding Specific and nonspecific interactions: intermolecular binding Specific and nonspecific interactions: intermolecular binding atoms →molecules molecules →supermolecules Supramolecular assemblies Radicals Ions Ion-radicals A + B → A―B AB + CD → A―B C―D

Supermolecules substratereceptor guest host

CALIX[4]ARENES

1872 – A.Bayer + H-CHO polymer products H+H+ + R-CHO H+H+ + H-CHO OH - n=4-8 + S 8 NaOH  1944 – A.Zinke, E.Zigler 1978 – C.D.Gutsche 1997 – H.Kumagai et al

R R R R OH HO R R R R OH HO

Brouwer, E. B. et al. Phys. Chem. Chem. Phys. 1999, 1, 4043 Brouwer, E. B.; Enright, G. D.; Ratcliffe, C. I.; Facey, G. A.; Ripmeester, J. A. J. Phys. Chem. 1999, 103, 10604

Calixarenes in Action (Eds. L. Mandolini, R. Ungaro), Imperial College Press. – p.

Problem: ‘Structure – thermodynamic property’ relationship for inclusion of volatile organic compounds by solid hosts Experimental method Static method of GC headspace analysis Experimental method Static method of GC headspace analysis Solid phase HOST GUEST Vapor phase Experimental data vapor sorption isotherms Experimental data vapor sorption isotherms Results Inclusion stoichiometry, free energy, cooperativity Results Inclusion stoichiometry, free energy, cooperativity Variation of host and guest molecular structure

Electropneumatic dosing B. Kolb, P. Pospisil, T. Borath and M. Auer, J. High Res. Chromatogr. & Chromatogr. Commun., 1979, 2, 283. Activity determination A. Hussam and P. W. Carr, Anal. Chem., 1985, 57, 793. Data examples J. H. Park, A. Hussam, P. Couasnon, D. Fritz and P. W. Carr, Anal. Chem., 1987, 59, Electropneumatic dosing B. Kolb, P. Pospisil, T. Borath and M. Auer, J. High Res. Chromatogr. & Chromatogr. Commun., 1979, 2, 283. Activity determination A. Hussam and P. W. Carr, Anal. Chem., 1985, 57, 793. Data examples J. H. Park, A. Hussam, P. Couasnon, D. Fritz and P. W. Carr, Anal. Chem., 1987, 59, ELECTROPNEUMATIC VALVE SPLITTER FUSED SILICA COLUMN VIAL WITH SAMPLE THERMOSTATE DEVICE OF STATIC HEADSPACE GAS CHROMATOGRAPHIC ANALYSIS solid phase binding of vapors in comparable conditions

Isotherms T=298 K O O O O H H H H S – inclusion stoichiometry N – cooperativity constant Hill equation inclusion threshold: = RT(lnC)/N - inclusion free energy

p-tert-Butylcalix[4]arene 1:1 host-guest complex of p-tert-butylcalix[4]arene with fluorobenzene 2:1 host-guest complex of p-tert-butylcalix[4]arene with 1-octanol Brouwer, E. B.; Udachin, K. A.; Enright, G. D.; Ripmeester J. A. et al Chem. Commun. 2001, 565 Brouwer, E. B et al Phys. Chem. Chem. Phys. 1999, 1, 4043

c-C 8 H c-C 7 H c-C 6 H c-C 5 H c-C 4 H ,2,4-C 6 H 3 Cl 3 41 AmCOOMe40 2-Heptanone39 C 6 H 5 Br38 c-C 6 H 11 Cl37 c-C 6 H 11 NH 2 36 BuCOOMe35 MeCOOBu34 C 6 H 5 Cl33 C 6 H 5 CH 3 32 n-BuCOMe31 c-C 6 H 11 OH30 1-BuBr29 n-BuCOMe28 C 6 H 5 OH27 MeCOOPr26 CCl 4 25 C6H6C6H BuCl23 Cl 2 C=CHCl22 Furfural21 PrCOMe20 C5H5NC5H5N19 EtI18 1-PrSH17 (MeCO) 2 O16 Et 2 O15 MeCOOEt14 EtCOOMe13 1-BuOH12 CS 2 11 EtCOMe10 CHCl 3 9 THF8 MeI7 EtBr6 1-PrOH5 MeCOOMe4 Me 2 CO3 EtOH2 MeOH1  Gsolv, kJ/mol = MR D R=0.9910, n=46,  =1.1 B.N.Solomonov, V.V.Gorbatchuk, A.I. Konovalov. Zh. Obsch. Khim. 1981, Vol. 51, P

-  H solv / kJ/mol = MR D n=102, r=0.994,  =1.56

1CH 3 OH 14c-Hexane20C 6 H 5 OCH 3 2CH 3 CN 15n-Hexane21n-Heptane 3EtOH 16Pinacolone22o-Xylene 5EtCN 17Toluene23C 6 H 5 Et 6(CH 3 ) 2 CO 18t-BuOAc24n-Octane 7n-PrOH 8CHCl 3 91,4-Dioxane 10n-Pentane 11n-BuCl 12C6H6C6H6 13CCl 4 19C 6 H 5 NO 2 25n-Nonane 2 : 1 guest / host 1 : 1 1 : 2 S~1~ const V. V. Gorbatchuk, A. G. Tsifarkin, I. S. Antipin, B. N. Solomonov and A. I. Konovalov, Mendeleev Commun., 1999, 11 Stoichiometry - guest size 1 MeOH5 Me 2 CO 2 MeCN6 CH 2 Cl 2 3 MeNO 2 7 CHCl 3 4 EtCN8 CCl 4 Lit.data (X-ray) V. V. Gorbatchuk, A. G. Tsifarkin, I. S. Antipin, B. N. Solomonov, A. I. Konovalov, P.Lhotak, I.Stibor J. Phys. Chem.B., 2002, 106(23);

p-tert-Butylcalix[4]arene 1:1 host-guest complex of p-tert-butylcalix[4]arene with fluorobenzene 2:1 host-guest complex of p-tert-butylcalix[4]arene with 1-octanol Brouwer, E. B.; Udachin, K. A.; Enright, G. D.; Ripmeester J. A.; Ooms, K. J.; Halchuk P. A. Chem. Commun. 2001, 565 Brouwer, E. B.; Gougeon, R. D. M.; Hirschinger, J.; Udachin, K. A.; Harris, R. K.; Enright, G. D.; Ripmeester, J. A. Phys. Chem. Chem. Phys. 1999, 1, 4043

All-trans n-hexane, 1-chlorobutane, 1,4-dichlorobutane and 1,4 dichlorobenzene All-trans n-hexane, 1-heptanol, 1-octanol and dodecane K. A. Udachin et al. /J. Supramol. Chem. 1 (2001) 97–100

1CH 3 OH 14c-Hexane20C 6 H 5 OCH 3 2CH 3 CN 15n-Hexane21n-Heptane 3EtOH 16Pinacolone22o-Xylene 5EtCN 17Toluene23C 6 H 5 Et 6(CH 3 ) 2 CO 18t-BuOAc24n-Octane 7n-PrOH 8CHCl 3 91,4-Dioxane 10n-Pentane 11n-BuCl 12C6H6C6H6 13CCl 4 19C 6 H 5 NO 2 25n-Nonane 2 : 1 guest / host 1 : 1 1 : 2 S~1~ const V. V. Gorbatchuk, A. G. Tsifarkin, I. S. Antipin, B. N. Solomonov and A. I. Konovalov, Mendeleev Commun., 1999, 11 Stoichiometry - guest size 1 MeOH5 Me 2 CO 2 MeCN6 CH 2 Cl 2 3 MeNO 2 7 CHCl 3 4 EtCN8 CCl 4 Lit.data (X-ray) V. V. Gorbatchuk, A. G. Tsifarkin, I. S. Antipin, B. N. Solomonov, A. I. Konovalov, P.Lhotak, I.Stibor J. Phys. Chem.B., 2002, 106(23);

Akdas, H.; Bringel, L.; Graf, E.; Hosseini, M. W.; Mislin, G.; Pansanel, J.; de Cian, A.; Fischer, J. Tetrahedron Lett. 1998, 39, 2311

1 MeOH 7 CHCl 3 2 MeCN 8 1,4-Dioxane 3 EtCN 9 Pyridine 4 Me 2 CO 10 C 6 H PrOH 11 CCl PrCN 12 Et 3 N Stoichiometry - guest size V. V. Gorbatchuk, A. G. Tsifarkin, I. S. Antipin, B. N. Solomonov, A. I. Konovalov, J. Seidel, F. Baitalov, J. Chem.Soc. Perkin Trans. 2, 2000, N11, P L. J. Barbour, S. A. Bourne, M. R. Caira, L. R. Nassimbeni, E. Weber, K. Skobridis and A. Wierig, Supramol. Chem., 1993, 1, 331

Isotherms T=298 K O O O O H H H H S – inclusion stoichiometry N – cooperativity constant Hill equation inclusion threshold: = RT(lnC)/N - inclusion free energy

N Guest MR D  G c (vap) 1 MeOH CH 3 CN EtOH * EtCN Me 2 CO CH 2 Cl PrOH * n-PrCN * CHCl C5H5NC5H5N * C6H6C6H * CCl c-C 6 H ** 14 n-C6H ** 15 Pinacolone ** 16 PhCH ** 17 t-BuOAc ** 18 PhOCH ** 19 Et 3 N * n-C 7 H ** 21 o-C 6 H 4 Me ** 22 n-C 8 H ** 23 n-C 9 H ** 24 MeNO * Dioxane 21.7-*-10.0 * no binding - not determined

Guest vapor solid host-guest compound  G c (vap) O O O O H H H H

Benzene, toluene, o-xyleneAlcohols, ketones, esters, anisole Nitriles, pyridine, triethylamine polychloromethanes n-alcanes, cyclohexane Guest vapor solid host-guest compound  G c (vap) O O O O H H H H

Guest vapor toluene solution  G solv Alcohols, ketones, esters, anisole Nitriles, pyridine, triethylamine polychloromethanes Benzene, toluene, o-xylene n-alcanes, cyclohexane

Alcohols, ketones, esters, anisole Nitriles, pyridine, triethylamine polychloromethanes Benzene, toluene, o-xylene n-alcanes, cyclohexane

Guest vapor solution  G solv = +  G cav  G int Solvation process cavity formationinteraction

 G trans toluene solution solid host-guest compound Alcohols, ketones, esters, anisole Nitriles, pyridine, triethylamine polychloromethanes Benzene, toluene, o-xylene n-alcanes, cyclohexane O O O O H H H H

MeOH, acetone MeCN, EtCN polychloromethanes nitromethane Guest vapor  G c (vap) solid host-guest compound

 G trans toluene solution solid host-guest compound MeOH, acetone MeCN, EtCN polychloromethanes nitromethane  G trans /kJ mol -1 = MR D (n = 7, r = 0.972, RSD = 0.6) V. V. Gorbatchuk, A. G. Tsifarkin, I. S. Antipin, B. N. Solomonov, A. I. Konovalov, P.Lhotak, I.Stibor J. Phys. Chem.B., 2002, 106(23);

Alcohols, acetone, dioxane MeCN, EtCN, PrCN, pyridine, Et 3 N CHCl 3, CCl 4 benzene  G trans /kJ mol -1 = MR D  G H MeOH (n = 13, r = 0.955, RSD = 0.8)  G trans /kJ mol -1 = MR D  G H PhOH (n = 13, r = 0.954, RSD = 0.8) V. V. Gorbatchuk, A. G. Tsifarkin, I. S. Antipin, B. N. Solomonov, A. I. Konovalov, J. Seidel, F. Baitalov, J. Chem.Soc. Perkin Trans. 2, 2000, N11, P

Dr.Gorbatchuk V.V. Prof.Antipin I.S. Dr.Tsifarkin A.G. Dr.Ziganshin M.A. Prof.Solomonov B.N. Group cooperates with W.Habicher TU Dresden, Germany J.Seidel TU BA Freiberg, Germany I.Stibor, P. LhotakVSHT Prague, Czech Rep. Support from RFBR (grants № , )