Wake Fields and Beam Dynamics

Slides:



Advertisements
Similar presentations
Today • Diffraction from periodic transparencies: gratings
Advertisements

Properties of Real Numbers CommutativeAssociativeDistributive Identity + × Inverse + ×
16.1 Si23_03 SI23 Introduction to Computer Graphics Lecture 16 – Some Special Rendering Effects.
1 Wake Fields and Beam Dynamics Kai Meng Hock. 2 Overview Research Interests –Wake fields Electromagnetic fields are induced by charged particles interacting.
Beam pipe Chao (1993) Collective Instabilities in Wakefield Coupled Bunches Objective - OCS6 Damping Ring - Transverse Growth Rates Kai Hock.
Talk given on ILC DR Workshop, December 18-20, 2007, KEK Preliminary estimates of impedance for the ILC damping ring Calculation of the impedances and.
1 Resistive wall wake field and extraction jitter in the ILC damping ring Kai Hock and Andy Wolski 5 th Wakefield Interest Group Meeting, 24 July 2008.
Using the real lattice and an improved model for the wake field, the extraction jitter can now be calculated more accurately. Assuming an injection jitter.
Chapter 7 Linear Momentum.
Solve Multi-step Equations
Damping Rings Impedance budget and effect of chamber coating
Pole Placement.
Announcements Homework 6 is due on Thursday (Oct 18)
Digital Filter Banks The digital filter bank is set of bandpass filters with either a common input or a summed output An M-band analysis filter bank is.
Notes 18 ECE Microwave Engineering Multistage Transformers
LIAL HORNSBY SCHNEIDER
Chapter 10 Money, Interest, and Income
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Vocabulary.
Direct-Current Circuits
S Transmission Methods in Telecommunication Systems (5 cr)
6.4 Best Approximation; Least Squares
Rational Functions and Models
DEELS workshop, ESRF, 12.– 13. May 2014 Friederike Ewald Difficulties to measure the absolute electron beam energy using spin depolarisation at the ESRF.
Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 1 Chapter 23: Reflection and Refraction.
Lecture 4. High-gain FELs X-Ray Free Electron Lasers Igor Zagorodnov Deutsches Elektronen Synchrotron TU Darmstadt, Fachbereich May 2014.
Exponents and Radicals
PSSA Preparation.
Eric Prebys, FNAL. USPAS, Knoxville, TN, Jan , 2014 Lecture 13 - Synchrotron Radiation 2 For a relativistic particle, the total radiated power (S&E.
Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 1 Chapter 17: Electric Potential Electric.
Simple Linear Regression Analysis
Computer Vision Lecture 7: The Fourier Transform
Commonly Used Distributions
Math Review with Matlab:
Copyright © Cengage Learning. All rights reserved.
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 18.1 Transient Behaviour  Introduction  Charging Capacitors and Energising.
ECE 530 – Analysis Techniques for Large-Scale Electrical Systems Prof. Hao Zhu Dept. of Electrical and Computer Engineering University of Illinois at Urbana-Champaign.
Damping ring K. Ohmi LC Layout Single tunnel Circumference 6.7 km Energy 5 GeV 2 km 35 km.
Finite wall wake function Motivation: Study of multi-bunch instability in damping rings. Wake field perturbs Trailing bunches OCS6 damping ring DCO2 damping.
Longitudinal instabilities: Single bunch longitudinal instabilities Multi bunch longitudinal instabilities Different modes Bunch lengthening Rende Steerenberg.
Particle Studio simulations of the resistive wall impedance of copper cylindrical and rectangular beam pipes C. Zannini E. Metral, G. Rumolo, B. Salvant.
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, N.Kazarinov.
Eric Prebys, FNAL. USPAS, Hampton, VA, Jan , 2015 Wakefields and Impedance 2 Consider the effect that one particle can have on subsequent particles.
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, A.Drozhdin, N.Kazarinov.
Beam observation and Introduction to Collective Beam Instabilities Observation of collective beam instability Collective modes Wake fields and coupling.
Eric Prebys, FNAL. USPAS, Knoxville, TN, January 20-31, 2014 Lecture 17 -Wakefields and Impedance 2 In our last lecture, we characterized the effects.
1 Simulations of fast-ion instability in ILC damping ring 12 April ECLOUD 07 workshop Eun-San Kim (KNU) Kazuhito Ohmi (KEK)
A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago Office of Science U.S. Department of Energy Containing a.
Lecture 25 - E. Wilson - 12/15/ Slide 1 Lecture 6 ACCELERATOR PHYSICS HT E. J. N. Wilson
Collimator wakefields - G.Kurevlev Manchester 1 Collimator wake-fields Wake fields in collimators General information Types of wake potentials.
Outline: Motivation Comparisons with: > Thick wall formula > CST Thin inserts models Tests on the Mode Matching Method Webmeeting N.Biancacci,
Project Background My project goal was to accurately model a dipole in the presence of the lossy Earth. I used exact image theory developed previously.
Orbits, Optics and Beam Dynamics in PEP-II Yunhai Cai Beam Physics Department SLAC March 6, 2007 ILC damping ring meeting at Frascati, Italy.
N. Mounet and E. Métral - HB /10/20101 News on the 2D wall impedance theory N. Mounet (EPFL/ CERN) and E. Métral (CERN) Thesis supervisor : Prof.
Electron cloud study for ILC damping ring at KEKB and CESR K. Ohmi (KEK) ILC damping ring workshop KEK, Dec , 2007.
Lecture 4 Longitudinal Dynamics I Professor Emmanuel Tsesmelis Directorate Office, CERN Department of Physics, University of Oxford ACAS School for Accelerator.
Computation of Resistive Wakefields Adina Toader and Roger Barlow The University of Manchester ILC-CLIC Beam Dynamics CERN th June.
WIR SCHAFFEN WISSEN – HEUTE FÜR MORGEN Motion in an Undulator Sven Reiche :: SwissFEL Beam Dynamics Group :: Paul Scherrer Institute CERN Accelerator School.
OPERATED BY STANFORD UNIVERSITY FOR THE U.S. DEPT. OF ENERGY 1 Alexander Novokhatski April 13, 2016 Beam Heating due to Coherent Synchrotron Radiation.
Collective Effect II Giuliano Franchetti, GSI CERN Accelerator – School Prague 11/9/14G. Franchetti1.
T. Agoh (KEK) Introduction CSR emitted in wiggler
New results on impedances, wake fields and electromagnetic fields in an axisymmetric beam pipe N. Mounet and E. Métral Acknowledgements: B. Salvant, B.
U C L A Electron Cloud Effects on Long-Term Beam Dynamics in a Circular Accelerator By : A. Z. Ghalam, T. Katsouleas(USC) G. Rumolo, F.Zimmermann(CERN)
TRANSVERSE RESISTIVE-WALL IMPEDANCE FROM ZOTTER2005’S THEORY
E. Métral, N. Mounet and B. Salvant
N. Mounet, G. Rumolo and E. Métral
Electromagnetic fields in a resistive cylindrical beam pipe
Na Wang and Qing Qin Institute of High Energy Physics, Beijing
Study of Fast Ions in CESR
TRANSVERSE RESISTIVE-WALL IMPEDANCE FROM ZOTTER2005’S THEORY
Presentation transcript:

Wake Fields and Beam Dynamics Kai Meng Hock 1

Overview A study of how particles affect other particles in accelerators: The importance of wake fields in storage rings. The effect on the stable movement of particles. Computing wake fields in cylindrical beam pipes. Equations of motion of particles in wake fields. Simulation of particle movements. Future work and challenges. 2

Wake Fields in Storage Rings Storage rings are circular accelerators in which charged particles circulate. These can be used to generate synchrotron radiation, or produce high quality beams for high energy physics experiments. These particles generate electric fields (wake fields) that perturb the stable particles behind. In new generations of accelerators (CLIC, ILC, …), it is getting increasingly difficult to suppress the growing instabilities. Accurate predictions are needed in order to control them. 3

The Nature of Wake Fields In a real accelerator: Wake fields are determined by the geometry and materials of the environment around the beam. Short-range effects act within a single bunch, and long-range effects act between bunches. The current work focuses on the uniform beam pipe and long range effects. e.g. Beam Position Monitors Generate complex wake fields 4

Wake Field from the Beam Pipe Wake field is the electric field generated by a charged particle moving close to light speed. There is no field in front because signal cannot travel faster than light. 0.35 mm 5 cm ~ light speed Charged particles are often compressed into bunches. The example below is for 1 GeV electrons. The wake force looks small but, given time, is enough to destabilise the bunch. 5 cm 1.4x10-11 N 1 cm 1 nC 1 nC Aluminium beam pipe 5

The Problem of Wake Fields Bunches coupled by wake field can oscillate and grow in amplitude. If this oscillation is not suppressed, the bunches will hit the wall after some time. In the ILC damping ring (6 km, 5 GeV, 400 mA, 3 cm radius, 61.4 tune), oscillation grows by 0.7% per turn. For an initial oscillation of 1 mm, the bunches will hit the wall in 0.03 second. 6

Growing oscillations observed In the KEKB electron ring in Japan, the oscillations are normally controlled by a feedback system. When the feedback is switched off, the oscillation amplitudes are observed to grow exponentially. 7

Method to control the oscillations Schematic of a feedback system Beam position monitor (BPM) detects position of bunch, and an electronic system processes the signal Kicker provides a deflection to bring the bunch back towards the desired trajectory The kick takes place after one turn, since the signal cannot travel faster than light. New accelerators require very fast response. This pushes the system to the limit of technology. kicker BPM 8

Transverse Wake Force Assuming that coupling between longitudinal and transverse motion is weak, only the transverse wake force is required here: F = -q2W1(z)y/L q is the charge of each bunch L is the circumference of the ring W1(z), the wake function, depends on the size and material of the beam pipe y q b F Aluminium pipe z 9

Assumptions to simplify problem Analytic calculation is possible if the following assumptions are made (Chao 1993): the wall of the beam pipe is infinitely thick the skin depth is very short compared with the radius. Both assumptions are true in the high frequency limit, but are often far from reality. Nevertheless, the formulae produced have been in use for decades. d b d >> d b >> d 10

An approximate analytic formula Assuming the high frequency limit, the transverse wake function is: W1(z) = -2/(b3)(c/sz)L b = beam pipe radius s = wall conductivity z = bunch spacing The z dependence has the simple form of 1/z b s z 11

Equations of motion Assume that the focusing strength is uniform. Each bunch experiences two types of forces: the focusing force from the magnets, -Mwb2y wb is the betatron frequency, M is the mass of the bunch sum of the wake forces from bunches in front. The equation of motion for each bunch is then: Md2ym/dt2 = -Mwb2ym - q2/L[W1(-ct)ym+1+W1(-2ct)ym+2+…] where ym the displacement of bunch m z y m m+1 m+2 ct F 12

Comparison with experiments When the approximate wake function is used with the equations of motion, the growth rates of the oscillation can be calculated analytically. Measurements in KEKB shows that trends agree. However, significant errors remain. [Measurement] 13

To improve the standard model The assumptions used in the model are: uniform focusing strength, high frequency limit (thick beam pipe, small skin depth). To improve the model, we start by using a real lattice. Uniform focusing N S Real lattice 14

Time domain simulation With a real lattice, analytic solution is no longer possible. To carry out the numerical integration: First, ignore wake force. Obtain the coordinates of each bunch after one time step using the lattice functions (and action-angle variables). Then, add the impulse (kick) of the wake force over this time step to the momentum of the bunch. To benchmark: Compare with the analytic solution when the focusing strength is uniform. Agreement shows that the method is accurate. kick (J-) (y,py) t 15

Simulation Results Growth rate in ILC damping ring Up 23% Actual lattice Uniform focusing N S This provides a more accurate specification for feedback systems For further improvement: an accurate wake function is needed Hock and Wolski, Phys. Rev. ST AB 10, 084401 (2007) 16

Convergence Issues Md2ym/dt2 = -Mwb2ym - q2/L[W1(-ct)ym+1+W1(-2ct)ym+2+…] The wake field from each bunch can go round the ring many times. So the sum of wake forces has taken to infinity, and convergence is a problem. Multiplying the terms by a function (window function) to smooth out the truncation of the sum improves the convergence rate, but a full convergence may still take months. No. of terms Wake sum (arb. units) Adding wake forces in ILC damping ring Convergence 17

Wake Sum Computation Times Many ways to optimise the computation have been tried: different compilers, different computers, different memory size. None worked. A new method is needed. Convergence Direct sums A new method 45 Turns on the ILC damping ring Computation Time (hr) No. of terms in wake sum 18

The FFT Convolution Method Md2ym/dt2 = -Mwb2ym - q2/L[W1(-ct)ym+1+W1(-2ct)ym+2+…] Within each turn, the sum can be arranged into the format of a discrete convolution (Koschik 2004). Applying the convolution theorem, the FFT can then be used to speed up the computation. In the case of the ILC damping ring, the computation speed is increased by 100 times. Computation can now be done within a day. 19

A more accurate wake function Next, the assumptions for the wake function – very thick wall and small skin depth – are removed. For realistic wall and bunches, a full wave calculation of Maxwell’s equations is needed. Extra coatings to improve the vacuum may also be present. This could modify the wake function further. Al NEG 20

Multilayer beam pipe wall A NEG coating may be added to the inner wall to improve the vacuum. NEG is an alloy of titanium. (The beam pipe is often made from Aluminium.) The electrical resistance of NEG is an order of magnitude higher than Aluminium. This would have an impact on the wake function. Grooves and antechambers may also be added to deal with space charge problems. We consider the NEG coating first – its cylindrical symmetry fits into the existing calculation readily. Al NEG 21

To find the wake function First, Maxwell’s equations are solved analytically in the frequency domain, for cylindrical symmetry. The beam pipe is assumed to be straight. For results to be valid, radius of the pipe should be small compared with radius of ring. The result is the electric field due to a continuous charge distribution along the pipe, with a particular frequency modulation along the axis. This is called the impedance. Wake function then is obtained by Fourier transform. q q exp(i2pfz/c) Fourier transform 22

A Full Wave Calculation Analytical solutions for the electric and magnetic fields can be obtained for each layer of the beam pipe. These are the two modified Bessel’s functions. The field is given by a linear combination of them. Al NEG 23

Getting the wake function The electric and magnetic field components are then matched at each interface. This gives a linear system of equations. The coefficients aij are formed by the modified Bessel’s functions. Solving these equations give the electric field at the axis, which then gives the impedance. Al NEG 24

Computational Issues Al NEG To obtain the impedance, the linear system is solved by Gaussian elimination. Because of rapid damping of the waves in the wall, some coefficients are extremely small. Numerical precision must be increased using software. Even then, computation fails at high frequency as skin depth becomes very small. This is a problem if the wake function is required at a very small distances (e.g. within the same bunch). 25

Lifting the assumptions For small skin depth (d), the wave in the wall sees a flat wall. This gives an exponentially decaying solution of the electric field in the wall (Chao 1993), leading to an impedance (1/) that diverges at low frequency. For skin depth comparable to pipe radius, the exact solution gives finite impedance at low frequency. For infinitely thick wall, there is only outgoing wave in the wall. For finite thickness, this wave is reflected at the outer wall. This can lead to multiple reflections for certain wavelengths. Approximately flat wall Multiple reflection 26

Impedance for 2 mm wall 2 cm pipe radius, 5 GeV electrons High f high freq limit Thick wall Small Skin depth High freq limit   Thick wall limit   thick wall Thick finite wall Finite Finite wall   Impedance has the correct high frequency limit (which takes the form 1/). The exact solution for thick wall limit is finite at low frequency. Finite wall impedance peaks when half wavelength in wall equals the wall thickness. 27

The effect of wall thickness Peak occurs when half wavelength in wall equals wall thickness. This explains the shift to lower frequency as wall thickness increases. Impedance approaches the correct thick wall limit. Wall thickness 0.2 mm 2 mm 20 mm 28

Impedance with NEG coating The impedance for a 2 mm thick Aluminium wall and 1 m thick NEG coating is calculated. Frequency domain shows distinct effects of wall and coating At low frequency, very different from thick wall approximation At high frequency, behaviour switches from Aluminium to NEG because skin depth falls below NEG thickness wall coating Thick wall approx. 29

The effect of NEG coating An additional peak or “bubble” appears when half wavelength in coating equals thickness of the coating. This explains the shift of the “bubble” to higher frequency as coating thickness decreases. When skin depth in coating becomes much smaller than the coating thickness, impedance switches to the high frequency limit of NEG. 30

Limitations of impedance calculation For the beam pipe used, computation fails above 105 MHz due to badly conditioned matrix. This misses part of the NEG coating “bubble”, and is approximated by the high frequency limit. At low frequency, impedance appears to be linear with frequency (needs to be verified analytically). These will affect the wake function calculation to follow. Truncate here 31

Analytic solution as a benchmark Analytic solution is possible at the high frequency limit. The resulting impedance has the form 1/. The wake function is obtained by Fourier transform. This can also be done analytically, and gives the same function form of 1/z. Impedance Wake function t  z/c 32

Controlling the numerical errors Deriving the wake function analytically provides a benchmark for the finite wall calculation. The Fourier transform must be truncated at some finite integration limits when computed numerically using FFT. This introduces errors. Comparison with the 1/z formula tells us the size of this error. z (arb. units) W1(z) (arb. units) Zero here because of causality 1/z FFT of 1/w real imag 33

Computing the wake function The wake function is obtained from the impedance using FFT. The range of z includes very small and very large values. A straightforward FFT requires a very large array of impedance values – about 50 GB for the ILC damping ring. To get around this problem, the FFT may be carried out on smaller arrays for different ranges of z. 1/z benchmark FFT 34

The effect of finite wall The results here show the changes as the assumptions are lifted one by one. Thick wall Small Skin depth       35

Explaining the wake function behaviour At large distance, the thick wall wake function is smaller in magnitude than the high frequency limit, because its impedance is finite at low frequency. The finite wall wake function is larger at small distance because of the peak in its impedance. 36

Significance of finite wall result Md2ym/dt2 = -Mwb2ym - q2/L[W1(-ct)ym+1+W1(-2ct)ym+2+…] The number of terms required for convergence of the wake force corresponds to 50 turns in the damping ring. Here, the finite wall result is significantly larger than the high frequency limit. This would have an impact on the calculations the unstable oscillations. Range required for convergence 37

Future Plan To study transient effects on beam jitter, during injection and extraction. Validate the finite wall wake function and calculated growth rates with experiments. Include bends in beam pipe, coupling between vertical and horizontal motions, unequal bunch spacings, other ring components, nonlinear effects, ... To meet the challenges of new physics regimes in the next generation of accelerators. 38