Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. 8.1 - 1 Section 8-3 Testing a Claim About a Proportion.

Slides:



Advertisements
Similar presentations
Testing a Claim about a Proportion Assumptions 1.The sample was a simple random sample 2.The conditions for a binomial distribution are satisfied 3.Both.
Advertisements

Two Sample Hypothesis Testing for Proportions
© 2010 Pearson Prentice Hall. All rights reserved Hypothesis Testing Using a Single Sample.
8-4 Testing a Claim About a Mean
8-2 Basics of Hypothesis Testing
8-3 Testing a Claim about a Proportion
Copyright © 2014, 2013, 2010 and 2007 Pearson Education, Inc. Chapter Hypothesis Tests Regarding a Parameter 10.
Lecture Slides Elementary Statistics Twelfth Edition
Definitions In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test is a standard procedure for testing.
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Lecture Slides Elementary Statistics Tenth Edition and the.
Lecture Slides Elementary Statistics Eleventh Edition
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved Chapter 8 Hypothesis Testing 8-1 Review and Preview 8-2 Basics of Hypothesis.
Copyright © 2010, 2007, 2004 Pearson Education, Inc Lecture Slides Elementary Statistics Eleventh Edition and the Triola Statistics Series by.
Lecture Slides Elementary Statistics Twelfth Edition
Overview Definition Hypothesis
Copyright © 2004 Pearson Education, Inc.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved Section 8-1 Review and Preview.
Sections 8-1 and 8-2 Review and Preview and Basics of Hypothesis Testing.
Chapter 8 Hypothesis Testing
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
Copyright © 2010, 2007, 2004 Pearson Education, Inc Lecture Slides Elementary Statistics Eleventh Edition and the Triola Statistics Series by.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved Section 8-5 Testing a Claim About a Mean:  Not Known.
Copyright © 2010, 2007, 2004 Pearson Education, Inc Lecture Slides Elementary Statistics Eleventh Edition and the Triola Statistics Series by.
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Section 9-2 Inferences About Two Proportions.
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
Hypothesis Testing for Proportions
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Section 8-4 Testing a Claim About a Mean:  Known Created by.
Slide Slide 1 Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing 8-3 Testing a Claim about a Proportion 8-4 Testing a Claim About.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Lecture Slides Elementary Statistics Eleventh Edition and the Triola.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved.Copyright © 2010 Pearson Education Section 9-5 Comparing Variation in.
Slide Slide 1 Section 8-5 Testing a Claim About a Mean:  Not Known.
Slide Slide 1 Section 8-3 Testing a Claim About a Proportion.
1 Hypothesis Testing Population Proportion (  ).
Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Section Inference about Two Means: Independent Samples 11.3.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Statistics Section 5-6 Normal as Approximation to Binomial.
Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 1 Testing a Claim about a Proportion Section 7-5 M A R I O F. T R I O L A Copyright.
1 Section 8.3 Testing a claim about a Proportion Objective For a population with proportion p, use a sample (with a sample proportion) to test a claim.
1 Chapter 8 Hypothesis Testing 8.2 Basics of Hypothesis Testing 8.3 Testing about a Proportion p 8.4 Testing about a Mean µ (σ known) 8.5 Testing about.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Section 7-1 Review and Preview.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Example 10.17:
Copyright © 2010, 2007, 2004 Pearson Education, Inc Section 8-2 Basics of Hypothesis Testing.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Section 9-1 Review and Preview.
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Overview.
Slide Slide 1 Section 8-4 Testing a Claim About a Mean:  Known.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved Lecture Slides Elementary Statistics Eleventh Edition and the Triola.
1 Definitions In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test is a standard procedure for testing.
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
Lecture Slides Elementary Statistics Twelfth Edition
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved.Copyright © 2010 Pearson Education Section 9-4 Inferences from Matched.
Copyright© 1998, Triola, Elementary Statistics by Addison Wesley Longman 1 Testing a Claim about a Mean: Large Samples Section 7-3 M A R I O F. T R I O.
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Lecture Slides Elementary Statistics and the Triola Statistics.
Copyright © 2010, 2007, 2004 Pearson Education, Inc Lecture Slides Elementary Statistics Eleventh Edition and the Triola Statistics Series by.
1 Section 8.4 Testing a claim about a mean (σ known) Objective For a population with mean µ (with σ known), use a sample (with a sample mean) to test a.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved.Copyright © 2010 Pearson Education Section 9-3 Inferences About Two Means:
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved Lecture Slides Elementary Statistics Eleventh Edition and the Triola.
Slide Slide 1 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing Chapter 8.
© 2010 Pearson Prentice Hall. All rights reserved Chapter Hypothesis Tests Regarding a Parameter 10.
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
Lecture Slides Elementary Statistics Eleventh Edition
Lecture Slides Elementary Statistics Twelfth Edition
Lecture Slides Essentials of Statistics 5th Edition
Elementary Statistics
Testing a Claim About a Mean:  Known
Elementary Statistics
Elementary Statistics
Testing a Claim About a Proportion
Testing a Claim About a Proportion
Testing a Claim About a Mean:  Known
Presentation transcript:

Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved Section 8-3 Testing a Claim About a Proportion

Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved Key Concept This section presents complete procedures for testing a hypothesis (or claim) made about a population proportion. This section uses the components introduced in the previous section for the P-value method, the traditional method or the use of confidence intervals.

Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved Key Concept Two common methods for testing a claim about a population proportion are (1) to use a normal distribution as an approximation to the binomial distribution, and (2) to use an exact method based on the binomial probability distribution. Part 1 of this section uses the approximate method with the normal distribution, and Part 2 of this section briefly describes the exact method.

Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved Part 1: Basic Methods of Testing Claims about a Population Proportion p

Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved Notation p = population proportion (used in the null hypothesis) q = 1 – p  n = number of trials p = (sample proportion) xnxn

Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved ) The sample observations are a simple random sample. 2) The conditions for a binomial distribution are satisfied. 3)The conditions np  5 and nq  5 are both satisfied, so the binomial distribution of sample proportions can be approximated by a normal distribution with µ = np and  = npq. Note: p is the assumed proportion not the sample proportion. Requirements for Testing Claims About a Population Proportion p

Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved p – pp – p pq n z =z =  Test Statistic for Testing a Claim About a Proportion P-values: Critical Values: Use the standard normal distribution (Table A-2) and refer to Figure 8-5 Use the standard normal distribution (Table A-2).

Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved Caution Don’t confuse a P-value with a proportion p. P-value =probability of getting a test statistic at least as extreme as the one representing sample data p = population proportion

Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved P-Value Method: Use the same method as described in Section 8-2 and in Figure 8-8. Use the standard normal distribution (Table A-2).

Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved Traditional Method Use the same method as described in Section 8-2 and in Figure 8-9.

Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved Confidence Interval Method Use the same method as described in Section 8-2 and in Table 8-2.

Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved CAUTION When testing claims about a population proportion, the traditional method and the P-value method are equivalent and will yield the same result since they use the same standard deviation based on the claimed proportion p. However, the confidence interval uses an estimated standard deviation based upon the sample proportion p. Consequently, it is possible that the traditional and P-value methods may yield a different conclusion than the confidence interval method. A good strategy is to use a confidence interval to estimate a population proportion, but use the P-value or traditional method for testing a claim about the proportion. 

Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved Example: The text refers to a study in which 57 out of 104 pregnant women correctly guessed the sex of their babies. Use these sample data to test the claim that the success rate of such guesses is no different from the 50% success rate expected with random chance guesses. Use a 0.05 significance level.

Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved Example: Requirements are satisfied: simple random sample; fixed number of trials (104) with two categories (guess correctly or do not); np = (104)(0.5) = 52 ≥ 5 and nq = (104)(0.5) = 52 ≥ 5 Step 1:original claim is that the success rate is no different from 50%: p = 0.50 Step 2:opposite of original claim is p ≠ 0.50 Step 3:p ≠ 0.50 does not contain equality so it is H 1. H 0 : p = 0.50 null hypothesis and original claim H 1 : p ≠ 0.50 alternative hypothesis

Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved Example: Step 4:significance level is  = 0.50 Step 5:sample involves proportion so the relevant statistic is the sample proportion, Step 6:calculate z: two-tailed test, P-value is twice the area to the right of test statistic

Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved Example: Table A-2: z = 0.98 has an area of to its left, so area to the right is 1 – = , doubles yields (technology provides a more accurate P-value of Step 7:the P-value of is greater than the significance level of 0.50, so fail to reject the null hypothesis Here is the correct conclusion: There is not sufficient evidence to warrant rejection of the claim that women who guess the sex of their babies have a success rate equal to 50%.

Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved (determining the sample proportion of households with cable TV) p = = = 0.64 x n 96 (96+54)  and 54 do not” is calculated using p sometimes must be calculated “96 surveyed households have cable TV   p sometimes is given directly “10% of the observed sports cars are red” is expressed as p = 0.10  Obtaining P 

Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved Part 2: Exact Method for Testing Claims about a Proportion p

Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved Testing Claims We can get exact results by using the binomial probability distribution. Binomial probabilities are a nuisance to calculate manually, but technology makes this approach quite simple. Also, this exact approach does not require that np ≥ 5 and nq ≥ 5 so we have a method that applies when that requirement is not satisfied. To test hypotheses using the exact binomial distribution, use the binomial probability distribution with the P-value method, use the value of p assumed in the null hypothesis, and find P-values as follows:

Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved Testing Claims Left-tailed test: The P-value is the probability of getting x or fewer successes among n trials. Right-tailed test: The P-value is the probability of getting x or more successes among n trials.

Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved Testing Claims Two-tailed test: the P-value is twice the probability of getting x or more successes the P-value is twice the probability of getting x or fewer successes

Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved Recap In this section we have discussed:  Test statistics for claims about a proportion.  P-value method.  Confidence interval method.  Obtaining p.