LENA – a liquid scintillator detector for Low Energy Neutrino Astronomy and proton decay Marianne Göger-Neff NNN07 TU MünchenHamamatsu Detector outline.

Slides:



Advertisements
Similar presentations
Trigger issues for KM3NeT the large scale underwater neutrino telescope the project objectives design aspects from the KM3NeT TDR trigger issues outlook.
Advertisements

The SNO+ Experiment: Overview and Status
R&D on Liquid-Scintillator Detectors R&D and Astroparticle Physics Lisbon, January 8th 2008 Michael Wurm Technische Universität München.
Analysis of the Optical Properties of Organic Liquid Scintillator in LENA DPG-Tagung in Heidelberg M. Wurm, T. Marrodán Undagoitia, F. v. Feilitzsch,
LENA Scintillator Characterization Transregio 27 SFB-Tage in Heidelberg 9/10. Juli 2009 Michael Wurm.
1 Calor02 Pasadena (USA) March 2002Lino Miramonti - University and INFN Milano Borexino: A Real Time Liquid Scintillator Detector for Low Energy.
New Large* Neutrino Detectors
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
The Diffuse Supernova Neutrino Background Louie Strigari The Ohio State University Collaborators: John Beacom, Manoj Kaplinghat, Gary Steigman, Terry Walker,
Low Energy Neutrino Astrophysics
Prospects for 7 Be Solar Neutrino Detection with KamLAND Stanford University Department of Physics Kazumi Ishii.
Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor ,
20 January 2005Steve Dye, HPU1 Neutrino Geophysics in Hawaii Presentation by Steve Dye Associate Professor of Physics Hawaii Pacific University January.
LENA Low Energy Neutrino Astrophysics F von Feilitzsch, L. Oberauer, W. Potzel Technische Universität München LENA Delta.
Liquid Scintillation Detectors for High Energy Neutrinos John G. Learned Department of Physics and Astronomy, University of Hawaii See: arXiv:
Diffuse supernova neutrino flux Cecilia Lunardini Arizona State University And RIKEN BNL Research Center UCLA, September 2009.
Results and Future of the KamLAND Experiment
21-25 January 2002 WIN 2002 Colin Okada, LBNL for the SNO Collaboration What Else Can SNO Do? Muons and Atmospheric Neutrinos Supernovae Anti-Neutrinos.
Potassium Geo-neutrino Detection Mark Chen Queen’s University Neutrino Geophysics, Honolulu, Hawaii December 15, 2005.
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
A feasibility study for the detection of SuperNova explosions with an Undersea Neutrino Telescope A. Leisos, A. G. Tsirigotis, S. E. Tzamarias Physics.
Neutrinos as Probes: Solar-, Geo-, Supernova neutrinos; Laguna
LENA Low Energy Neutrino Astrophysics L. Oberauer, Technische Universität München LENA Delta EL SUD Meeting.
李玉峰 中科院高能所 JUNO中微子天文和天体物理学研讨会
Prospects of the search for neutrino bursts from Supernovae with Baksan Large Volume Scintillation Detector V.B. Petkov Institute for Nuclear Research.
SUPERNOVA NEUTRINOS AT ICARUS
I. Giomataris NOSTOS Neutrino studies with a tritium source Neutrino Oscillations with triton neutrinos The concept of a spherical TPC Measurement of.
Solar Neutrinos Perspectives and Objectives Mark Chen Queen’s University and Canadian Institute for Advanced Research (CIFAR)
Physics Potential of the LENA Detector Epiphany Conference Cracow January 8, 2010 Michael Wurm Technische Universität München.
1 LENA Low Energy Neutrino Astronomy NOW 2010, September 6, 2010 Lothar Oberauer, TUM, Physik-Department.
KamLAND Experiment Kamioka Liquid scintillator Anti-Neutrino Detector - Largest low-energy anti-neutrino detector built so far - Located at the site of.
The Elementary Particles. e−e− e−e− γγ u u γ d d The Basic Interactions of Particles g u, d W+W+ u d Z0Z0 ν ν Z0Z0 e−e− e−e− Z0Z0 e−e− νeνe W+W+ Electromagnetic.
Lino MiramontiJune 9-14, 2003, Nara Japan 1st Yamada Symposium Neutrinos and Dark Matter in Nuclear Physics.
Status of the BOREXINO experiment Hardy Simgen Max-Planck-Institut für Kernphysik / Heidelberg for the BOREXINO collaboration.
LAGUNA Large Apparatus for Grand Unification and Neutrino Astrophysics Launch meeting, Heidelberg, March 2007, Lothar Oberauer, TUM.
Methods and problems in low energy neutrino experiments (solar, reactors, geo-) I G. Ranucci ISAPP 2011 International School on Astroparticle physics THE.
KamLAND : Studying Neutrinos from Reactor Atsuto Suzuki KamLAND Collaboration KEK : High Energy Accelerator Research Organization.
Yasuhiro Kishimoto for KamLAND collaboration RCNS, Tohoku Univ. September 12, 2007 TAUP 2007 in Sendai.
Present and future detectors for Geo-neutrinos: Borexino and LENA Applied Antineutrino Physics Workshop APC, Paris, Dec L. Oberauer, TU München.
LSc development for Solar und Supernova Neutrino detection 17 th Lomonosov conference, Moscow, August 2015 L. Oberauer, TUM.
GADZOOKS! project at Super-Kamiokande M.Ikeda (Kamioka ICRR, U.of Tokyo) for Super-K collaboration 1 Contents GADZOOKS! project Supernova.
SNO and the new SNOLAB SNO: Heavy Water Phase Complete Status of SNOLAB Future experiments at SNOLAB: (Dark Matter, Double beta, Solar, geo-, supernova.
A. IanniIFAE, Catania Mar. 30, Solar neutrinos: present and future Aldo Ianni INFN, Gran Sasso Laboratory.
MC SIMULATIONS TERRESTRIAL NEUTRINOS SOLAR NEUTRINOS Detection Channels - neutrino-electron scattering → Compton-like shoulder - CC reaction on 13 C (1%
Application of neutrino spectrometry
LoNu Workshop R. B. Vogelaar October 14, 2006 Extraordinary Neutrino Beam Free of Charge For NEUTRINO PHYSICS: WELL DEFINED HIGHEST FLUX (~10 11 cm -2.
1 IDM2004 Edinburgh, 9 september 2004 Helenia Menghetti Bologna University and INFN Study of the muon-induced neutron background with the LVD detector.
New Results from the Salt Phase of SNO Kathryn Miknaitis Center for Experimental Nuclear Physics and Astrophysics, Univ. of Washington For the Sudbury.
Neutrinos from the sun, earth and SN’s: a brief excursion Aldo IFAE 2006 Pavia April 19 th.
CTF at Gran Sasso (overview of the hardware) Richard Ford (SNOLAB) (who has not been in the collaboration since 2004) March 19 th 2010.
Detection of the Diffuse Supernova Neutrino Background in LENA & Study of Scintillator Properties Michael Wurm DPG Spring Meeting, E15.
Astroparticle physics with large neutrino detectors  Existing detectors  Physics motivation  Antares project  KM3NeT proposal M. de Jong.
Caren Hagner – LENA: Low Energy Neutrino Astronomy The LAGUNA Liquid Scintillator Detector Caren Hagner (Hamburg University) for the LAGUNA-LENA.
1 LTR 2004 Sudbury, December 2004 Helenia Menghetti, Marco Selvi Bologna University and INFN Large Volume Detector The Large Volume Detector (LVD)
Solar Neutrinos By Wendi Wampler. What are Neutrinos? Neutrinos are chargeless, nearly massless particles Neutrinos are chargeless, nearly massless particles.
Solar Neutrino Results from SNO
Search for the Diffuse Supernova Neutrino Background in LENA DPG-Tagung in Heidelberg M. Wurm, F. v. Feilitzsch, M. Göger-Neff, T. Marrodán Undagoitia,
Supernova Relic Neutrinos (SRN) are a diffuse neutrino signal from all past supernovae that has never been detected. Motivation SRN measurement enables.
Results from Borexino Davide Franco CNRS-APC NOW 2012 September 9-16, 2012.
5th June 2003, NuFact03 Kengo Nakamura1 Solar neutrino results, KamLAND & prospects Solar Neutrino History Solar.
Liquid Scintillator Detector Lena Low Energy Neutrino Astronomy L. Oberauer, TUM.
Aldo Ianni for the Borexino collaboration 12th International Workshop on Next Generation Nucleon Decay and Neutrino Detectors Zurich, 7 th Nov 2011.
23/11/05BENE meeting at CERN1 (22-25 November 2005) L. Mosca (CEA-Saclay) The MEMPHYS project MEgaton Mass PHYSics in a Large International Underground.
Waseda univ. Yamada lab. D1 Chinami Kato
(Xin-Heng Guo, Bing-Lin Young) Beijing Normal University
Overview of the Jiangmen Underground Neutrino Observatory (JUNO)
Davide Franco for the Borexino Collaboration Milano University & INFN
Intae Yu Sungkyunkwan University (SKKU), Korea KNO 2nd KNU, Nov
Overview of the Jiangmen Underground Neutrino Observatory (JUNO)
Low Energy Neutrino Astrophysics
Presentation transcript:

LENA – a liquid scintillator detector for Low Energy Neutrino Astronomy and proton decay Marianne Göger-Neff NNN07 TU MünchenHamamatsu Detector outline Physics potential: solar neutrinos Supernova neutrinos diffuse Supernova neutrino background proton decay geoneutrinos R&D on liquid scintillators Outlook

detector size: 100 m length 30 m Ø 50 kt liquid scintillator PXE as default option PMTs 30 % coverage light yield ~ 120 pe for events in center water Cerenkov muon veto 2m of active shielding located at > 4000 mwe Pyhäsalmi mine, Finland Nestor site, Mediterranean Sea LENA – detector outline 100 m 30 m L. Oberauer et al.,NPB 138 (2005) 108 alternative: vertical tanks 25 kt each

Why liquid scintillator for detection? Neutrinos interact only weakly... => low count rate experiments => detectors must have large mass, good shielding, good background discrimination Liquid scintillators offer... high light yield (~50 times more than water Cerenkov) => low energy threshold quenching of heavy particles ( , n) LY(  ) ~ 1/10 LY(  ) => background suppression liquid at ambient temperatures: => advantageous for detector construction and handling => several purification methods applicable (distillation, water extraction, nitrogen sparging, column chromatography) easily available in large amounts, reasonable price (~ 1€/l)

Neutrino Astronomy neutrinos are ideal probes for astronomy: neutral: no deflection by B-fields almost no absorption in matter direct information about their origin BUT: hard to detect

LENA - solar neutrinos high statistics solar neutrino spectroscopy (fiducial volume 18 kt): – 7 Be ~ 5400 events per day  test of small flux variations on short time scales, e.g. due to density profile fluctuations, look for coincidences with helioseismological data !  test of day/night asymmetry (MSW effect in the earth) –pep ~ 150 events per day  solar luminosity in neutrinos –CNO ~ 200 events per day  important for heavy stars – 8 B- e ~ 360 events per year from CC reaction on 13 C (~ 1% ab.)  distortion of 8 B-  spectrum precise determination of solar fusion reactions and oscillation parameters experience gained with Borexino e + 13 C -> 13 N + e - Q thr = 2.2 MeV back decay (  =863 s): 13 N -> 13 C + e + + e Ianni et al. Phys.Lett. B627 (2005) 38-48

Detection of pep and CNO neutrinos transition region important to discriminate MSW from NSI need low 11 C background to detect pep and CNO neutrinos at least 4000 mwe. discriminate 11 C by 3fold coincidence ( µ + n + 11 C) Borexino coll. PhysRevC 74, (2006) about 90% reduction can be reached by local cuts around µ track and n capture position Friedland, Lunardini, Peña-Garay hep-ph/

Supernova Neutrinos Core collapse Supernova: M prog ≥ 8 M Sun,  E ≈ MeV 99% of the energy is carried away by neutrinos Neutrinos with ~ 10 MeV within few s Neutrinos provide information on: 1. Supernova physics: Gravitational collapse mechanism Supernova evolution in time Cooling of the proto-neutron star Shock wave propagation 2. Neutrino properties Neutrino mass (time of flight) Oscillation parameters (matter effects) 3. Early alert for astronomers ( burst several hours before optical burst) Real-time spectroscopy of different -flavours T. Janka e e x

LENA – Supernova Neutrinos Possible reactions Event rate for a 8M ⊙ Supernova in liquid scintillator:in 10 kpc distance (KRJ, no osc.): e + p  n + e + (Q=1.8 MeV) 8700 e spectroscopy e + 12 C  12 B + e + (Q=13.4 MeV) 200 e + 12 C  12 N + e - (Q=17.3 MeV) 130 e spectroscopy x + 12 C  12 C* + x  12 C +  (15.1 MeV) 950 total flux x + e -  x + e - (E thr = 0.2 MeV) 700  mainly  e,  e  x + p  x + p (E thr = 0.2 MeV) 2200 total energy spectrum (mainly    ) Diploma thesis by J. Winter, TUM 2007, to be published for different models (TBP, LL, KRJ) and different oscillation scenarios the total rate changes from to events Beacom et al. Phys.Rev.D 66(2002)033001

LENA - Diffuse Supernova Neutrino Background DSN give information about star formation rate Super-Kamiokande limit ( 19.3 MeV) close to theoretical expectations (KamLAND: cm-2 s-1 for 8.3 MeV<E<14.8MeV) use delayed coincidence e p -> e + n advantage of LENA: - low reactor neutrino background  threshold ~ 9 MeV (SK 19 MeV) - distinction btw. e / e possible predicted SRN rate in LENA ~ counts per year limit after 10 years: < 0.3 cm -2 s -1 for 10 MeV < E < 19 MeV < 0.13 cm -2 s -1 for 19 MeV < E < 25 MeV M. Wurm et al. Phys.Rev. D75 (2007)

LENA – proton decay proton decay predicted by GUT, SUSY theories SUSY predicts dominant decay mode  p (p->K + )~ years K + is invisible in water Cerenkov detectors event structure:

LENA – proton decay  K Cutting at a rise time of 9 ns Acceptance ~ 60% Background suppression (atmospheric  ->  ) ~5 x Event structure: 3-fold coincidence, use energies, time and position correlation, pulse shape analysis Expected background: < 0.1 ev/year (K production by atmospheric ) Limit after 10 years: 4 x years (90% CL) Current SK limit: 2.3 x years (90% CL) => 40 events in 10 years in LENA (<1 backgr. ev.) T. Marrodan et al., Phys. Rev. D 72, (2005)

Geo-Neutrinos Neutrino flux and spectrum depend on the distribution of radioactive elements in the Earth‘s crust and mantle (mainly U, Th) => input data for Earth models = neutrino geophysics First geo-neutrinos detected by KamLAND => in LENA 400 – 4000 ev/year scaled from KamLAND Detection via p + e  n + e + Hochmuth et al. Astrop.Phys 27, 21 (2007)

Studies of liquid scintillator properties Light Yield Choice of right solvent Optimization of fluor concentration Transparency Measurement of attenuation and scattering length Influence of scintillator purification Fluorescence Decay Time Optimizing scintillator response time => time and position resolution Alpha quenching => alpha-beta discrimination Radiopurity and purification methods Ge spectroscopy (+ NAA) to screen various materials and study effects of purification Long term stability Investigated scintillators: Phenyl-xylyl-ethane (PXE) Linear Alkylbenzene (LAB)  = 0.86  = 0.99

Light yield and decay time measure number of photoelectrons per MeV and exponential decay time constants for different solvent/fluor mixtures under study: PXE/LAB/dodecane PPO/PMP/bisMSB PXE + 2g/l PPO T. Marrodan, PhD thesis,, TUM, in preparation

Scintillator emission spectrum excitation by UV light with deuterium lamp excitation by 10 keV electrons T. Marrodan, PhD thesis,, TUM, in preparation

Light propagation Measurement of attenuation length separate scattering and absorption: measure angular dependence with polarized/unpolarized light attenuation length > nm scattering and absorption lengths > 20 m M. Wurm, diploma thesis, TUM, 2005

Radiopurity UGL in Garching, 15 mwe shielding 150% HPGe detector with NaJ anti-Compton + µ-veto panels radiopurity screening of various materials extension of the UGL planned muon veto + anti-Compton passive shielding only Diploma thesis, M. Hofmann, TUM, 2007

LAGUNA Large Apparatus for Grand Unification and Neutrino Astrophysics 30m 100m MEMPHYS Water Čerenkov Detector 500 kt target in 3 shafts, 3x 81,000 PMs LENA Liquid-Scintillator Detector 13,500 PMs, 50 kt target GLACIER Liquid-Argon Detector 100 kt target, 20m drift length, LEM-foil readout 28,000 PMs for Čerenkov- and scintillation light coordinated R+D design study in European collaboration on-going application for EU funding ~ 20 participating institutes scientific paper: (hep-ph)

Summary and Outlook LENA : multi-purpose detector for low energy neutrino astronomy and proton decay evaluation of physics potential: solar neutrinos  Supernova neutrinos  diffuse SN background  geoneutrinos  proton decay  atmospheric neutrinos  reactor neutrinos  beta beams / nu factory  detector design under study: scintillator development photosensors & electronics optimum tank size and shape optimum location R&D is funded in SFB/TR 27 ‘Neutrinos and beyond’ and in excellence cluster ‘Origin and structure of the universe’ joint European effort: LAGUNA

LENA - geoneutrinos source of the terrestrial heat flow contribution of natural radioactivity distribution of U, Th, K in crust, mantle and core hypothetical natural reactor at the Earth‘s center? Detection via p + e  n + e + core enhanced  (rad) minimal maximum ref hep-ph

Supernova Neutrinos earth matter effect: if SN neutrinos pass through the Earth before being the detector, see wiggles in spectrum Dighe, Keil & Raffelt hep-ph/

Requirements of the liquid scintillator low energy threshold good energy resolution precise position reconstruction correlated events with short delay good background separation  different pulse shapes for alphas/betas low background from radioactivity  high radiopurity long measuring time(~5-10 years) safety in underground laboratories  high flash point  high light yield  high transparency  fast decay time  high transparency  long-term stability  material compatibility detectors should feature:

Shock propagation neutrinos