Overview of Meson Spectroscopy Experiments and Data Curtis A. Meyer Carnegie Mellon University.

Slides:



Advertisements
Similar presentations
Jan. 19, 2005GlueX/Exotics 2005 GlueX: Search for Gluonic Excitations at JLab Dr. David Lawrence Jefferson Lab Dr. David Lawrence Jefferson Lab.
Advertisements

Experiment Overview on Meson Spectroscopy: Current and Future
Excited State Spectroscopy from Lattice QCD
An initial study of mesons and baryons containing strange quarks with GlueX 12 GeV electrons 40% lin. Pol. Uncollimated Collimated Coherent Peak GlueX.
HL-2 April 2004Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-2) Quarkonium Charmonium spectrum quark-antiquark potential chromomagnetic.
The charmonium mass spectrum
Charmonium Spectroscopy: Missing or Unconfirmed States Diego Bettoni INFN – Sezione di Ferrara International Workshop on Physics with Antiprotons at GSI.
J/  Physics at BESIII/BEPCII Xiaoyan SHEN Institute of High Energy Physics, CAS BESIII/CLEO-c Workshop, Jan , 2004, Beijing.
The Physics of GlueX Curtis A. Meyer Carnegie Mellon University.
Projected Non-perturbative QCD Studies with CLEO-c QCD is felt to be the theory of strong interaction, BUT… spectroscopy incomplete Exotica predicted,
Polish-German Meeting, Warszawa, Search for exotic hadrons with the PANDA detector Jan Kisiel Institute of Physics, University of Silesia Katowice,
New Results and Prospects of Light Hadron Spectroscopy Shan JIN Institute of High Energy Physics (IHEP) Presented by Yi-Fang Wang.
Hadron Physics with polarized photons at 9 GeV with GlueX Richard Jones University of Connecticut UConn Physics Graduate Studies Open House, Mar. 19, 2010.
September 29, 2009 Saint Vincent College 1 Confinement Curtis A. Meyer Carnegie Mellon University Gluonic Hadrons: A Probe of.
The Jefferson Lab Hall D Project Curtis A. Meyer Carnegie Mellon University SLAC Seminar, 10 January, 2002 The Search for QCD Exotics and.
The GlueX Experiment in Hall-D
1. Science of Confinement The spectroscopy of light mesons led to the quark model and QCD: mesons are quark-antiquark color singlet bound states held.
GlueX/Hall-D Physics Curtis A. Meyer Carnegie Mellon University JLab Users Group Meeting, June 7,2010.
QCD Exotics at BNL and JLab Curtis A. Meyer Carnegie Mellon University.
Spectroscopy: Experimental Status and Prospects Curtis A. Meyer Carnegie Mellon University.
Amplitude Analysis in GlueX Curtis A. Meyer Carnegie Mellon University.
Elton S. Smith MESON2012 May 31 – June 5, GlueX: Photoproduction of Hybrid Mesons Elton S. Smith, Jefferson Lab for the GlueX Collaboration 12th.
Meson spectroscopy with photo- and electro-production Curtis A. Meyer Carnegie Mellon University.
Klaus Peters Ruhr-Universität Bochum Yokohama, March 3, 2003 Charmed
Mesons and Glueballs September 23, 2009 By Hanna Renkema.
Hybrid Mesons and Spectroscopy Curtis A. Meyer Carnegie Mellon University Based on C.A. Meyer and Y. Van Haarlem, Phys. Rev. C82, (2010). Expectations.
3/6/2008PHP March Photon-hadron physics with the GlueX detector at Jefferson Lab Curtis A. Meyer, Spokesperson GlueX CH L-2.
Hadron Spectroscopy from Lattice QCD
Graphic from poster by Sarah Lamb, UConn Honors Program event Frontiers in Undergraduate Research, April 2009 Collimator subtends
First Results of Curtis A. Meyer GlueX Spokesperson.
Cesare Bini, Bernhard Ketzer Workshop on New Partial Wave Analysis Tools for Next Generation Hadron Spectroscopy Experiments Camogli, Italy 22 June 2012.
New Observations on Light Hadron Spectroscopy at BESIII Yanping HUANG For BESIII Collaboration Institute of High Energy Physics (IHEP) ICHEP2010, Paris,
Robert Edwards Jefferson Lab Creutz-Fest 2014 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAAAAAAAAAAAA 1983 HADRONS.
Sub-Nucleon Physics Programme Current Status & Outlook for Hadron Physics D G Ireland.
g/ JLab Users Group Meeting Curtis A. Meyer Poster.
N* analysis at the Excited Baryon Analysis Center of JLab Hiroyuki Kamano (EBAC, Jefferson Lab) CLAS12 2 nd European Workshop, March 7-11, Paris, France.
H. Koch; Seminar Graduate College Bochum/Dortmund; Hadron Spectroscopy with Antiprotons  Historical Overview  Spetroscopy with antiproton beams.
October 2006GHP The GlueX Experiment Curtis A. Meyer CH L-2.
Scalar and pseudoscalar mesons at BESII Xiaoyan SHEN (Representing BES Collaboration) Institute of High Energy Physics, CAS, China Charm06, June 5-7, 2006,
Hybrid Mesons and Spectroscopy Curtis A. Meyer Carnegie Mellon University Based on C.A. Meyer and Y. Van Haarlem, Phys. Rev. C82, (2010). Overview.
Overview - Alex Dzierba Hall D Calorimeter Review 1 Hall D/GlueX Calorimeter Review Overview and Physics Motivation Alex R. Dzierba Indiana U and Jefferson.
Forefront Issues in Meson Spectroscopy
1. Science of Confinement The spectroscopy of light mesons led to the quark model and QCD: mesons are quark-antiquark color singlet bound states held.
Yu. Guz (IHEP Protvino) Light exotic mesons in hadronic collisions.
The meson landscape Scalars and Glue in Strong QCD New states beyond Weird baryons: pentaquark problems “Diquarks,Tetraquarks, Pentaquarks and no quarks”
Light Hadron Spectroscopy at BESIII Haolai TIAN (On behalf of the BESIII Collaboration) Institute of High Energy Physics, Beijing 23rd Rencontre de Blois.
1 Recent Results on J/  Decays Shuangshi FANG Representing BES Collaboration Institute of High Energy Physics, CAS International Conference on QCD and.
July 10, 2006TAPS 2006 Experimental Hall-D and the GlueX Experiment at Jefferson Lab Dr. David Lawrence Jefferson Lab Dr. David Lawrence Jefferson Lab.
1 Meson spectroscopy Hybrid mesons and Multiquark states Samuel Hoekman Zorione Herrasti.
Exotics & Glueballs QCD suggests the existence of non states like:  Glueballs ( gg,ggg ): mesons made of bound gluons.  Hybrids ( ): qqbar pairs with.
WA102 and Meson Spectroscopy It may be relevant to the PD … a short reminder. … a short reminder. Ted Barnes Physics Div. ORNL Dept. of Physics, U.Tenn.
May 31, 2006 CIPANP Glueballs, Hybrids & Exotics Curtis A. Meyer Carnegie Mellon University May 31, 2006 An Experimental & Phenomenological Overview.
May 14, 2003 Curtis A. Meyer 1 Carnegie Mellon University May 14, 2003 An Experimental Overview of Gluonic Mesons.
D. Bettoni - The Panda experiment 1 Charmonium Spectroscopy The charmonium system has often been called the positronium of QCD. Non relativistic potential.
Baryons on the Lattice Robert Edwards Jefferson Lab Hadron 09
Exotics as a Probe of Confinement
Gluonic Hadrons: A Probe of Confinement
Curtis A. Meyer Carnegie Mellon University
Recent results on light hadron spectroscopy at BES
Study of New Hadron Spectroscopy at BESIII
The GlueX Experiment Curtis A. Meyer CH L-2 11/28/2018 CIPANP 2006.
Possible Interpretations of DsJ(2632)
The Hadron Spectrum and QCD
Excited State Spectroscopy from Lattice QCD
Excited State Spectroscopy from Lattice QCD
Gluonic Excitations of
CMU Undergraduate Colloquium
Interpretation of the observed hybrid candidates by the QGC Model
Mixing of scalar meson and glueball
Curtis A Meyer Carnegie Mellon University
Presentation transcript:

Overview of Meson Spectroscopy Experiments and Data Curtis A. Meyer Carnegie Mellon University

Outline Meson Spectroscopy and QCD Glueballs Lattice QCD and Gluonic Excitations Experimental Evidence Summary June 20, 2012ATHOS

June 20, 2012ATHOS Spectroscopy and QCD QCD is a theory of quarks and gluons, where our current understanding is that most of the hadronic mass originates from the color forces and the gluonic fields. To a great extent, we can understand the spectrum of mesons as simple quark-antiquark systems, with no need to invoke gluons. Understanding the role of glue in both the meson and the baryon spectrum, and how it impacts our ``naïve’’ spectroscopy is needed. One important aspect of this is the search for states with explicit gluonic contents: glueballs and hybrids.

Spin: S=S q1 +S q2 ½ + ½ =(0,1) Orbital Angular Momentum: L=0,1,2,… Reflection in a mirror: Parity: P=-(-1) (L) Total Spin: J=L+S L=0, S=0 : J=0 J PC = 0 -+ L=0, S=1 : J=1 J PC = 1 -- L=1, S=0 : J=1 J PC = 1 +- L=1, S=1 : J=0,1,2 J PC = L=2, S=0 : J=1 J PC = 2 -+ L=2, S=1 : J=1,2,3 J PC = … … Particle Antiparticle: Charge Conjugation: C=(-1) (L+S) Quarkonium Spectroscopy and QCD q q S q1 =1/2 S q2 =1/ … Exotic Quantum NumbersQuark-model Quantum Numbers … Quark-model Classification of Mesons June 20, 2012ATHOS

June 20, 2012ATHOS Spectroscopy and QCD Quarkonium q q Experimental Spectrum I=1I=0 Two I=0 per I=1

June 20, 2012ATHOS Spectroscopy and QCD Quarkonium q q u d s u s d Consider the three lightest quarks 9 Combinations These two states can mix: Nonets Ideal Mixing:  =35.26 o

June 20, 2012ATHOS Lattice QCD Glueball Predictions Gluons can bind to form glueballs EM analogue: massive globs of pure light. Lattice QCD predicts masses The lightest glueballs have “ normal ” quantum numbers. Glueballs will Q.M. mix The observed states will be mixed with normal mesons. Strong experimental evidence For the lightest state.

June 20, 2012ATHOS Glueballs should decay in a flavor-blind fashion. Identification of Glueballs Lightest Glueball predicted near two states of same Q.N.. “ Over population ” Predict 2, see 3 states Production Mechanisms: Certain are expected to by Glue-rich, others are Glue-poor. Where do you see them? Proton-antiproton Central Production J/  decays

June 20, 2012ATHOS f 0 (1500) f 2 (1270) f 0 (980) f 2 (1565)+  700,000  0  0  0 Events f 0 (1500) 250,000  0 Events Discovery of the f 0 (1500) f 0 (1500)   ’, KK, 4  f 0 (1370)   Crystal Barrel Results Establishes the scalar nonet Solidified the f 0 (1370) Discovery of the a 0 (1450) Crystal Barrel Results

June 20, 2012ATHOS Central Production Experiment Comprehensive data set and a coupled channel analysis. CERN experiment colliding protons on a hydrogen target. Wa102 Results

June 20, 2012ATHOS Experimental Evidence Scalar (0 ++ ) Glueball and two nearby mesons are mixed. f 0 (980) f 0 (1500) f 0 (1370) f 0 (1710) a 0 (980) a 0 (1450) K* 0 (1430) Glueball spread over 3 mesons Are there other glueballs?

June 20, 2012ATHOS meson Glueball meson Glueball meson 1 r2r2 r3r3 flavor blind? r Solve for mixing scheme Glueball-Meson Mixing

June 20, 2012ATHOS Part of the BES-III program will be to search for glueballs in radiative J/  decays. Part of the PANDA program at GSI. Lattice predicts that the 2 ++ and the 0 -+ are the next two, with masses just above 2GeV/c 2. Radial Excitations of the 2 ++ ground state L= States + Radial excitations f2(1950), f2(2010), f2(2300), f2(2340)… 2 ’ nd Radial Excitations of the  and  ’, perhaps a bit cleaner environment! (I would Not count on it though….) I expect this to be very challenging. Higher Mass Glueballs?

Gluonic Excitations June 20, 2012ATHOS ground-state flux-tube m=0 excited flux-tube m=1 Gluonic Excitations provide an experimental measurement of the excited QCD potential.

June 20, 2012ATHOS Spectroscopy and QCD Lattice QCD Predictions

June 20, 2012ATHOS Spectroscopy and QCD Quarkonium q q Lattice QCD suggests non-ideal mixing in: Experimental results on mixing: 0 -+ ground state and radial D 1 ground state ground state 1 -+ exotic

June 20, 2012ATHOS Spectroscopy and QCD Lattice QCD Predictions States with non-trivial glue in their wave function.

June 20, 2012ATHOS Lattice QCD calculation of the light- quark meson spectrum Normal QN Exotic QN 2.0GeV Several nonets predicted Gev Spectroscopy and QCD Lattice QCD Predictions Beyond the normal meson spectrum, there are predictions for states with exotic quantum numbers

June 20, 2012ATHOS Several nonets predicted 2.0GeV Gev Spectroscopy and QCD Lattice QCD Predictions ``Constituent gluon’’ behaves like it has J PC = 1 +- Lightest hybrid nonets: 1 --, (0 -+,1 -+, 2 -+ ) The 0+- and two 2+- exotic nonets: also a second 1 -+ nonet. p-wave meson plus a ``gluon’’.

The angular momentum in the flux tube stays in one of the daughter mesons (an (L=1) and (L=0) meson).  1   b 1,  f 1, ,  a 1  1  (1300) , a 1  b 2  a 1 , h 1 ,  a 2  h 2  b 1 ,  b 0   (1300) , h 1  h 0  b 1 , h 1  L flux Exotic Quantum Number Hybrids Mass and model dependent predictions Populate final states with π ±, π 0,K ±,K 0,η, ( photons ) June 20, ATHOS 2012 The channels we are looking at for PWA. Other interesting channels for PWA. Spectroscopy and QCD Quarkonium

June 20, 2012ATHOS Experimental Evidence The most extensive data sets to date are from the BNL E852 experiment. There is also data from the VES experiment at Protvino and some results from the Crystal Barrel experiment at LEAR. Results from the COMPASS experiment at CERN are available. There are also results from the CLEO-c experiment. Finally, there are null results from CLAS. BNL E852, VES, COMPASS Crystal Barrel CLEO-c, BES-III CLAS WA102, COMPASS

June 20, 2012ATHOS Experimental Evidence The most extensive data sets to date are from the BNL E852 experiment. There is also data from the VES experiment at Protvino and some results from the Crystal Barrel experiment at LEAR. Results from the COMPASS experiment at CERN are available. There are also results from the CLEO-c experiment. Finally, there are null results from CLAS.  1 (1400) Width ~ 0.3 GeV, Decays: only  weak signal in  p production (scattering??) strong signal in antiproton-deuterium.  1 (1600) Width ~ 0.30 GeV, Decays ,  ’ ,(b 1  ) Seen in  p production, (E852,VES,COMPASS) Seen in  c decays. There is some controversy around the  decay mode. Not observed in CLAS.  1 (2000) Weak evidence in preferred hybrid modes f 1  and b 1  only seen in E852.

June 20, 2012ATHOS π 1 (1400) Mode Mass Width Production ηπ ± ± ηπ ±20±25 354±64± ηπ seen in annihilation E852 + CBAR (1997) While everyone seems to agree that there is intensity in the P + exotic wave, there are a number of alternative (non-resonant) explanations for this state. Unlikely to be a hybrid based on its mass. Also, the only observed decay should not couple to a member of an SU(3) octet. It could couple to an SU(3) decuplet state (e.g. 4-quark). Experimental Evidence for Hybrid s

June 20, ATHOS 2012 E852 Experiment Natural-parity exchange: 0 +,1 -,2 +,… Unnatural-parity exchange: 0 -,1 +,2 -,… Unnatural exchange Natural exchange Leakage from other partial waves. π 1 (1600) Only quote results from the 1 + (natural parity) exchange. π 1 (1600) M = 1598 ± MeV/c 2 Γ = 168± MeV/c 2

August 2009Charmed Exotics 25 Dzierba et. al. PRD 73 (2006) Get a better description of the data via moments comparison. Intensity for the exotic 1 -+ wave goes away. Phase motion between the 1 -+ and the 2 ++ wave is not affected. No Evidence for the  1 (1600) π - p→pπ - π 0 π 0 π - p→pπ - π - π + 10 times statistics in each of two channels. New Analysis ( Events) ( Events)

Modified wave set: Leave out (1 + )π 2 (1670)→ρπ(L=1) (1 + )π 2 (1670)→ρπ(L=3) (0 + )π 2 (1670)→ρπ(L=3) Always Include: (0 + )π 2 (1670)→f 2 π(L=0) (1 + )π 2 (1670)→f 2 π(L=0) (1-)π 2 (1670)→f 2 π(L=0) (0 + )π 2 (1670)→f 2 π(L=2) (1 + )π 2 (1670)→f 2 π(L=2) PDG: π 2 (1670) Decays 3π 96% f 2 π 56% ρπ 31% Most of the strength in the exotic π 1 (1600) is better described by known decays of the π 2 (1670). August Charmed Exotics Where does the intensity go? New Analysis

June 20, 2012ATHOS COMPASS Experiment (180 GeV pions) 1 -+ Exotic Wave arXiv: (420,000 Events) 42 Partial waves included, exotic is dominantly 1 + production. π 1 (1600) m=1660 Γ=269 π 2 (1670) m=1658 Γ=271

August 2009Charmed Exotics 28 CLAS Experiment γp→nπ + π + π - E γ = 4.8 – 5.4 GeV Events after all cuts Overall Acceptance < 5% Baryons “removed” by hard kinematic cuts. PWA No evidence of π 1 (1600)→ρπ, (13.5 nb upper limit).

June 20, 2012ATHOS E852 Experiment  - p   ’  - p Data are dominated by 1 -+, 2 ++ and 4 ++ partial waves. Data are dominated by natural parity exchange. π 1 (1600) M = 1597± MeV/c 2 Γ = 340±40±50 MeV/c 2 The exotic wave is the dominant wave in this channel. (~6000 Events)

COMPASS June 20, 2012ATHOS  phase

1 -+ b 1 π π - p→ωπ 0 π - p 1 -+ b 1 π 2 ++ ωρ 4 ++ ωρ m ε =1 + m ε =0 - Δφ( )Δφ( ) Δφ( ) June 20, ATHOS 2012 E852 Experiment π 1 (1600)→b 1 π M = 1664±8±10 MeV/c 2 Γ = 185±25±38 MeV/c 2 Seen in both natural and unnatural parity exchange. The unnatural dominates π 1 (2000)→b 1 π M = 2014±20±16 MeV/c 2 Γ = 230±32±73 MeV/c 2 Seen primarily in natural parity exchange. The natural dominates (~145,000 Events) Solid curves are a two-pole 1 -+ solution. Dashed curves are a one-pole 1 -+ solution.

π - p→ηπ + π - π - p 1 ++ f 1 π f 1 π f 1 π - ΔΦ( ) ΔΦ( ) ΔΦ( ) June 20, ATHOS 2012 E852 Experiment π 1 (1600)→f 1 π M = 1709±24±41 MeV/c 2 Γ = 403±80±115 MeV/c 2 Natural parity exchange π 1 (2000)→f 1 π M = 2001±30±92 MeV/c 2 Γ = 333±52±49 MeV/c 2 Natural parity exchange Black curves are a two-pole 1 -+ solution. Red curves are a one-pole 1 -+ solution. (~69000 Events)

June 20, 2012ATHOS Experimental Evidence The most extensive data sets to date are from the BNL E852 experiment. There is also data from the VES experiment at Protvino and some results from the Crystal Barrel experiment at LEAR. Results from the COMPASS experiment at CERN are available. There are also results from the CLEO-c experiment. Finally, there are null results from CLAS.  1 I G (J PC )=1 - (1 -+ )  ’ 1 I G (J PC )=0 + (1 -+ )  1 I G (J PC )=0 + (1 -+ ) K 1 I G (J PC )= ½ (1 - )  1 (1600) Width ~ 0.30 GeV, Decays ,  ’ ,(b 1  ) Seen in  p production, (E852,VES,COMPASS) Seen in  c decays. There is some controversy around the  decay mode. Not observed in CLAS.  1 (2000) Weak evidence in preferred hybrid modes f 1  and b 1  only seen in E852. No signal for  1 or  1 ’. No signal for 2 +- or GeV Gev

June 20, 2012ATHOS In order to establish the existence of gluonic excitations, We need to establish the existence and nonet nature of the 1 -+ state. We need to establish at other exotic QN nonets – the 0 +- and Decay Patterns are Crucial Coupled Channel PWA Needed. Very Large Data Sets Expected Exotics and QCD The challenge is carrying out a PWA with huge statistics and good theoretical underpinnings to the method.

June 20, 2012ATHOS Future Prospects: COMPASS at CERN collected a large data set in Analysis is underway. BES III in China has been running for a few years. Analysis on χ decays are looking for light-quark exotics. Searching for Glueballs. GlueX at Jefferson Lab will use photo-production to look for exotic mesons at Jefferson Lab. First physics in PANDA at GSI will use antiprotons to search for charmed hybrid states. Also looking for Glueballs. CLAS12 at Jefferson Lab will look at low-multiplicity final states in very-low Q**2 reactions.

June 20, 2012ATHOS Conclusions The quest to understand confinement and the strong force is starting to make great leaps forward. Advances in theory and computing have allowed us to start to understand the meson spectrum and the role of glue. Definitive experiments to confirm or refute our expectations on the role of glue are running and under construction. The synchronized advances in LQCD and experiment will allow us to understand the role of glue in QCD and confinement.