Cryogenic particle detection at the Canfranc Underground Laboratory First International Workshop for the Design of the ANDES Underground Laboratory Centro.

Slides:



Advertisements
Similar presentations
Dante Nakazawa with Prof. Juan Collar
Advertisements

Advanced GAmma Tracking Array
DIRECT DARK MATTER DETECTION AT THE CANFRANC UNDERGROUND LABORATORY
EDELWEISS-I last results EDELWEISS-II prospects for dark matter direct detection CEA-Saclay DAPNIA and DRECAM CRTBT Grenoble CSNSM Orsay IAP Paris IPN.
Dark Matter search with EDELWEISS and beyond Gilles Gerbier CEA Saclay – IRFU Rencontres de Moriond- VHEPU march 15 th Expérience pour DEtecter.
DMSAG 14/8/06 Mark Boulay Towards Dark Matter with DEAP at SNOLAB Mark Boulay Canada Research Chair in Particle Astrophysics Queen’s University DEAP-1:
The PICASSO experiment - searching for cold dark matter
Status of Ultra-low Energy HPGe Detector for low-mass WIMP search Li Xin (Tsinghua University) KIMS collaboration Oct.22nd, 2005.
KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Benjamin Schmidt, IEKP, KIT Campus North,
R. Lemrani CEA Saclay Search for Dark Matter with EDELWEISS Status and future NDM ’06 Paris, September 3-9, 2006.
WP2 Background simulations Outline Execution plan for the third year Progress of the work Activities and news.
Possible merits of high pressure Xe gas for dark matter detection C J Martoff (Temple) & P F Smith (RAL, Temple) most dark matter experiments use cryogenic.
1 Edelweiss-II status Eric Armengaud (CEA), for the Edelweiss Collaboration Axion-WIMPs training workshop, Patras, 22/06/2007.
Present and Future Cryogenic Dark Matter Search in Europe Wolfgang Rau, Technische Universität München CRESSTCRESST EURECA ryogenic are vent earch with.
Present and future activities of the Garching group (E15)
Neutron background measurement at LNGS: present status Measurement carried out in collaboration between LNGS ILIAS-JRA1 and ICARUS groups.
CUORICINO and CUORE Chiara Brofferio Università di Milano – Bicocca and INFN, Sez. di Milano NOW 2004 – Otranto 12 – 17 September 2004 On behalf of the.
EDELWEISS-II : Status and future
T. Frank for the CRESST collaboration Laboratori Nazionali del Gran Sasso C. Bucci Max-Planck-Institut für Physik M. Altmann, M. Bruckmayer, C. Cozzini,
CRESST Cryogenic Rare Event Search with Superconducting Thermometers Max-Planck-Institut für Physik University of Oxford Technische Universität München.
Direct Dark Matter Searches
th KPS meeting 1 Development of Radon Monitoring Detector for the KIMS Experiment Lee, Myoung Jae DMRC, Seoul national university.
Stefano Pirro, IDEA Meeting -Zaragoza November 7, Nd Project High Temperature Thermistors News about NdGaO 3 Scintillating Bolometers Conclusions.
THE CUORE EXPERIMENT: A SEARCH FOR NEUTRINOLESS DOUBLE BETA DECAY Marco Andrea Carrettoni on behalf of the CUORE collaboration 2 nd International Conference.
Surface events suppression in the germanium bolometers EDELWEISS experiment Xavier-François Navick (CEA Dapnia) TAUP Sendai September 07.
Neutron Monitoring Detector in KIMS Jungwon Kwak Seoul National University 2003 October 25 th KPS meeting.
Neutron scattering systems for calibration of dark matter search and low-energy neutrino detectors A.Bondar, A.Buzulutskov, A.Burdakov, E.Grishnjaev, A.Dolgov,
Dark Matter Search with SuperCDMS Results, Status and Future Wolfgang Rau Queen’s University.
HEP-Aachen/16-24 July 2003 L.Chabert IPNL Latest results ot the EDELWEISS experiment : L.Chabert Institut de Physique Nucléaire de Lyon ● CEA-Saclay DAPNIA/DRECAM.
The European Future of Dark Matter Searches with Cryogenic Detectors H Kraus University of Oxford EURECA.
Status of Surface Sensitive Bolometers University of Insubria – Como, Italy INFN – Milano, Italy Prague, Chiara Salvioni.
The Tokyo Dark Matter Experiment NDM03 13 Jun. 2003, Nara Hiroyuki Sekiya University of Tokyo.
Underground Laboratories and Low Background Experiments Pia Loaiza Laboratoire Souterrain de Modane Bordeaux, March 16 th, 2006.
Min Kyu Lee ( 이민규 ) Kyoung Beom Lee ( 이경범 ) Yong-Hamb Kim ( 김용함 ) Low Temperature Detectors 2006 Workshop on the Underground Experiment at Yangyang TEXONO-KIMS.
Experiment TGV II Multi-detector HPGe telescopic spectrometer for the study of double beta processes of 106 Cd and 48 Ca For TGV collaboration: JINR Dubna,
The EDELWEISS-II experiment Silvia SCORZA Université Claude Bernard- Institut de Physique nucléaire de Lyon CEA-Saclay DAPNIA/DRECAM (FRANCE), CNRS/CRTBT.
Véronique SANGLARD Université de Lyon, UCBL1 CNRS/IN2P3/IPNLyon Status of EDELWEISS-II.
KPS Chonbuk University 2005/10/22 HYUNSU LEE Status of the KIMS dark matter search experiment with CsI(Tl) crystals Hyun Su Lee Seoul National.
Muon and Neutron Backgrounds at Yangyang underground lab Muju Workshop Kwak, Jungwon Seoul National University 1.External Backgrounds 2.Muon.
Stefano Pirro – NuMass 2010 Stefano Pirro Double beta decay searches with enriched and scintillating bolometers - Milano - Bicocca The Future of Neutrino.
BACKGROUND REJECTION AND SENSITIVITY FOR NEW GENERATION Ge DETECTORS EXPERIMENTS. Héctor Gómez Maluenda University of Zaragoza (SPAIN)
WIMP search Result from KIMS experiments Kim Seung Cheon (DMRC,SNU)
? At Yangyang beach, looking for something in the swamp of particles and waves. 1 The recent results from KIMS Seung Cheon Kim (Seoul National University)
Activities on double beta decay search experiments in Korea 1.Yangyang Underground laboratory 2.Double beta decay search with HPGe & CsI(Tl) 3.Metal Loaded.
The COBRA Experiment Jeanne Wilson University of Sussex, UK On behalf of the COBRA Collaboration TAUP 2007, Sendai, Japan.
SrCl 2 crystal for EC/  + search Presented by J.H. So (KNU)
PyungChang 2006/02/06 HYUNSU LEE CsI(Tl) crystals for WIMP search Hyun Su Lee Seoul National University (For The KIMS Collaboration)
1 CRESST Cryogenic Rare Event Search with Superconducting Thermometers Jens Schmaler for the CRESST group at MPI MPI Project Review December 14, 2009.
Scintillating Bolometers – Rejection of background due to standard two-neutrino double beta decay D.M. Chernyak 1,2, F.A. Danevich 2, A. Giuliani 1, M.
Slides for IG NewS : GG – analysis june juin 2016 Spherical detector: recent developments I. Giomataris, CEA-Irfu-France Spherical detector at.
CRESST Cryogenic Rare Event Search with Superconducting Thermometers Max-Planck-Institut für Physik University of Oxford Technische Universität München.
A Search for Cold Dark Matter with Cryogenic Detectors at Frejus Underground Laboratory * EDELWEISS experiment 1.Experiment status and results for first.
Leo Stodolsky 80th anniversary
Measurement of prompt fission g-rays with lanthanum halide scintillation detectors A. Oberstedt This work was supported by the EFNUDAT programme of the.
From Edelweiss I to Edelweiss II
Status of ULE-HPGe Experiment for WIMP Search in YangYang
ArchPbMoO4 scintillating bolometers as detectors to search for neutrinoless double beta decay of 100Mo Serge Nagorny INFN – Gran Sasso Science Institute,
The CRESST Dark Matter Search Status Report
Cryogenic Particle Detectors in Rare event Searches
Fast neutron flux measurement in CJPL
Pulse-shape discrimination with Cs2HfCl6 crystal
Dark Matter Search With an Ultra-low Threshold Germanium Detector proposed by Tsinghua University Seoul National University Academia Sinica Qian Yue.
Serge Nagorny – GSSI-INFN
CRESST Cryogenic Rare Event Search with Superconducting Thermometers
Irina Bavykina, MPI f. Physik
Sr-84 0n EC/b+ decay search with SrCl2 crystal
CsI Compton Veto Detector for A low Mass WIMP Experiment
Status of Neutron flux Analysis in KIMS experiment
Yue, Yongpyung, Korea Prospects of Dark Matter Search with an Ultra-Low Threshold Germanium Detector Yue, Yongpyung, Korea
The Development of a Segmented Detector using ZnS:Ag/6Li
Presentation transcript:

Cryogenic particle detection at the Canfranc Underground Laboratory First International Workshop for the Design of the ANDES Underground Laboratory Centro Atómico Constituyentes Buenos Aires, Argentina April, 2011

OutlineOutline The ROSEBUD Collaboration The scintillating bolometer Particle discrimination capability Experimental set-up in the old LSC facilities Main results: Light & heat response to different particles WIMP search prototypes Gamma and neutron spectroscopy ROSEBUD in the new LSC facilities EURECA

OutlineOutline The ROSEBUD Collaboration The scintillating bolometer Particle discrimination capability Experimental set-up in the old LSC facilities Main results: Light & heat response to different particles WIMP search prototypes Gamma and neutron spectroscopy ROSEBUD in the new LSC facilities EURECA

Institut d’Astrophysique Spatiale IAS (Orsay, France) Universidad de Zaragoza UNIZAR (Spain) Canfranc Underground Laboratory (LSC) ROSEBUD Collaboration (Rare Objects SEarch with Bolometers UndergrounD) N. Coron, C. Cuesta, E. García, C. Ginestra, J. Gironnet, P. de Marcillac, M. Martínez, A. Ortiz de Solórzano, Y. Ortigoza, C. Pobes, J. Puimedón, T. Redon, T. Rolón, M.L. Sarsa, L. Torres and J.A. Villar. Spectrométrie Thermique pour l’Astrophysique et la Physique (STAP) Institut d’Astrophysique Spatiale – IAS (Orsay, France) Nuclear and Astroparticle Physics Group (GIFNA) University of Zaragoza (Spain)

* light + heat technique has shown to be also a powerful tool for nuclear physics Testing of particle detector prototypes in a low background environment. R&D line: characterization of scintillating materials at low temperature. All materials tested have shown scintillation at low temperature: CaWO 4, BGO, LiF, Al 2 O 3 and SrF 2. Multi-target approach: use of scintillating bolometers of different materials in the same experimental set-up. Nuclear recoils discrimination against  /  background through light + heat technique for WIMP search. * Goals of ROSEBUD ROSEBUD scientific website: Goals of ROSEBUD ROSEBUD scientific website: Sapphire bolometers: 25, 50, 200 and 1000 g Ø 25 mm Ø 40 mm Ge optical bolometer

OutlineOutline The ROSEBUD Collaboration The scintillating bolometer Particle discrimination capability Experimental set-up in the old LSC facilities Main results: Light & heat response to different particles WIMP search prototypes Gamma and neutron spectroscopy ROSEBUD in the new LSC facilities EURECA

7 Thermal model of a simple bolometer Properties of bolometers 1.Wide choice of different absorber materials. 2.High energy resolution FWHM. 3.Low energy threshold for particle detection. 4.Particle identification capability in hybrid measurements of heat-light or heat-ionization energies. Dielectric and diamagnetic crystal The Scintillating Bolometer n

8 20 mK Internal reflecting cavity (Cu coated with Ag) Ge-NTD thermistor Optical bolometer (Ge disk) Scintillating crystal (absorber) Cu frame Thermal link BGO 92 g Thermal link Ge-NTD thermistor The Scintillating Bolometer

OutlineOutline The ROSEBUD Collaboration The scintillating bolometer Particle discrimination capability Experimental set-up in the old LSC facilities Main results: Light & heat response to different particles WIMP search prototypes Gamma and neutron spectroscopy ROSEBUD in the new LSC facilities EURECA

10 Particle Discrimination Capability Nuclear recoils spectrum c / channel 59.5 keV ( 241 Am)  /  spectrum Light pulse amplitude (mV) Heat pulse amplitude (mV) Sapphire Bolometer (50 g) Calibration 252 Cf & 241 Am internal source Nuclear recoils region Detector response alphas //

OutlineOutline The ROSEBUD Collaboration The scintillating bolometer Particle discrimination capability Experimental set-up in the old LSC facilities Main results: Light & heat response to different particles WIMP search prototypes Gamma and neutron spectroscopy ROSEBUD in the new LSC facilities EURECA

Canfranc Underground Laboratory (LSC) 2450 m.w.e. Tobazo Peak Spanish Pyreness ROSEBUD 12 Muon flux decreased by a factor ~ m today 118 m 2 Experimental set-up in the old LSC facilites The underground laboratory 2.5·10 -3 m -2 s -1

13 LiF Mass 33 g Monitoring of neutrons through 6 Li(n,t)  Sapphire (Al 2 O 3 ) Mass 50 g 27 Al: ↓A  sensitive to  SI and  SD interactions High β/γ background rejection ↓Z & low energy threshold BGO (Bi 4 Ge 3 O 12 ) Mass 46 g 209 Bi: ↑A,  sensitive to  SI and  SD interactions 207 Bi contamination (clean BGOs available)  /  spectrometer ↑Z T = 20 mK Experimental set-up in the old LSC facilites The scintillating bolometers

14 Experimental set-up in the old LSC facilites The dilution refrigerator and shielding

Faraday cage (2  2  3 m 3 ) Pumping and control systems 15 Experimental set-up in the old LSC facilites The Faraday Cage and the cryogenic pumping system

OutlineOutline The ROSEBUD Collaboration The scintillating bolometer Particle discrimination capability Experimental set-up in the old LSC facilities Main results: Light & heat response to different particles WIMP search prototypes Gamma and neutron spectroscopy ROSEBUD in the new LSC facilities EURECA

17 Sapphire Light REF (  /  :  : NR) 59.5 keV 122 keV keV 241 Am + 57 Co Heat signal amplitude (mV) Light signal amplitude (mV) Light output (γ) = 13.5 keV / MeV REF (γ / NR) = 17.5 ± keV ) Light output (α) = 1.3 keV / MeV REF (  / α) = 10.3 ± MeV )  /  events  events 210 Po

18 BGO Light REF (  /  :  : NR) 252 Cf REF(  /  :  ) 209 Bi Th daughters

19 Sapphire Thermal REF ( 206 Pb nuclear recoils:  /  ) 206 Pb recoils at ± 0.10 keV from 210 Po  source 206 Pb recoil Spectrum of the events in the NR band Thermal REF of NR Relevant for the calibration of the dark matter signal Al 2 O 3

BGO irradiation with 241 Am  source BGO Thermal REF ( 237 Np nuclear recoils:  /  ) 237 Np recoiling nuclei at ± 0.12 keV from 241 Am  source

21 Energy partition in Sapphire and BGO scintillating bolometers Heat pulse amplitude (mV) Light pulse amplitude (mV) 57 Co Am 59.5 keV ( 241 Am) keV ( 57 Co) keV ( 57 Co) Al 2 O 3  +  h +  0 = 1  0 =   =   h =  BGO  0 =   =   h =  Al 2 O 3

OutlineOutline The ROSEBUD Collaboration The scintillating bolometer Particle discrimination capability Experimental set-up in the old LSC facilities Main results: Light & heat response to different particles WIMP search prototypes Gamma and neutron spectroscopy ROSEBUD in the new LSC facilities EURECA

23 C.L (1 tailed) E (keV) 90 % % % % %21.3 Sapphire Kyropoulos grown C.L (1 tailed)E (keV) 90% %33.3 BGO Czochralski grown BGO Discrimination of NR down to ≈25 keV Discrimination of NR down to ≈10 keV WIMP searches Particle discrimination power

OutlineOutline The ROSEBUD Collaboration The scintillating bolometer Particle discrimination capability Experimental set-up in the old LSC facilities Main results: Light & heat response to different particles WIMP search prototypes Gamma and neutron spectroscopy ROSEBUD in the new LSC facilities EURECA

Rn inside the Pb shielding The BGO allows to note the background level increase and also to identify its origin The BGO scintillating bolometer as  -ray spectrometer

Heat channel energy resolution

1keV25meV capture elastic scattering total Thermal n 27 Resonance capture The LiF scintillating bolometer as neutron spectrometer 6 Li(n,t)  neutron detection efficiencies of LiF bolometers

NR Irradiation of a 33 g LiF and a 50 g Al 2 O 3 scintillating bolometers with 252 Cf 6 Li(n,  ) resonance Previous work presented at TAUP09: J Phys: Conf Series 203 (2010) Hypothesis: fast neutron flux inside the lead shielding We estimated the region of three parameters (  0, ,T) compatible with experimental data LiF & Al 2 O 3 6 Li(n,  ) Q th = 4.78 MeV  /  events NR  /  events  events Scintillating bolometers as neutron spectrometers Fast neutron flux inside the shielding Scintillating bolometers as neutron spectrometers Fast neutron flux inside the shielding

Present work: Testing hypothesis about the fast neutron flux inside the shielding Al 2 O 3 heat NR spectra measured MCNP-PoliMi Spectra shape in good agreement Comparison of full experimental data with MC calculation is in progress  = −0.9 T = 1.48 MeV Scintillating bolometers as neutron spectrometers Fast neutron flux inside the shielding Scintillating bolometers as neutron spectrometers Fast neutron flux inside the shielding

OutlineOutline The ROSEBUD Collaboration The scintillating bolometer Particle discrimination capability Experimental set-up in the old LSC facilities Main results: Light & heat response to different particles WIMP search prototypes Gamma and neutron spectroscopy ROSEBUD in the new LSC facilities EURECA

31 ROSEBUD in the new LSC facilities

ROSEBUD in the new new LSC facilities Hall B ROSEBUD in the new new LSC facilities Hall B 3  3  4.5 m³

ROSEBUD in the new new LSC facilities Hall B ROSEBUD in the new new LSC facilities Hall B

OutlineOutline The ROSEBUD Collaboration The scintillating bolometer Particle discrimination capability Experimental set-up in the old LSC facilities Main results: Light & heat response to different particles WIMP search prototypes Gamma and neutron spectroscopy ROSEBUD in the new LSC facilities EURECA

EURECA project Universidad de Zaragoza Institut d’Astrophysique Spatiale IAS Target mass 1 ton. Semiconductor bolometers built with the technology of EDELWEISS (LSM). Scintillating bolometers built with the technology of CRESST (LNGS) and ROSEBUD (LSC). To be carried out at the Modane Underground Laboratory (LSM) in France. 35 UNIZAR and IAS integrated in EURECA See also Gilles Gerbier’s talk!

ROSEBUD is a collaborative effort dedicated to the development of scintillating bolometers for nuclear and particle physics experiments, focusing on rare event search experiments. Scintillating bolometers characterized by ROSEBUD (Al 2 O 3, BGO and LiF) have shown excellent capabilities for particle discrimination and background rejection. ROSEBUD is currently moving to the Hall B in the new LSC facilities planning to restart measurements in New materials are being characterized in IAS. UNIZAR and IAS also participate in EURECA. Conclusions

Radiopurity measurements of materials (crystals, cryogenic resins, shieldings, detector components, dilution unit pieces) at LSC using ultra-low background germanium detectors. Development of new scintillating bolometers. Test of scintillating bolometers at the Canfranc Underground Laboratory (LSC) in order to characterize and optimize scintillators in a low background environment, evaluating these for use as potential dark matter targets in EURECA. UNIZAR and IAS participation in EURECA