3.3: Dividing Polynomials: Remainder and Factor Theorems Long Division of Polynomials 1.Arrange the terms of both the dividend and the divisor in descending.

Slides:



Advertisements
Similar presentations
Dividing Polynomials.
Advertisements

Remainder and Factor Theorems
Chapter 2 Polynomial and Rational Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Dividing Polynomials: Remainder and Factor Theorems.
Warm-Up: January 5, 2012  Use long division (no calculators) to divide.
Dividing Polynomials Objectives
5-4 Dividing Polynomials Long Division Today’s Objective: I can divide polynomials.
§ 6.4 Division of Polynomials. Blitzer, Intermediate Algebra, 5e – Slide #2 Section 6.4 Division of Polynomials In this section we will look at dividing.
Slide Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley.
Dividing Polynomials Section 2.4. Objectives Divide two polynomials using either long division or synthetic division. Use the Factor Theorem to show that.
§ 6.5 Synthetic Division and the Remainder Theorem.
Dividing Polynomials; Remainder and Factor Theorems.
Warm up. Lesson 4-3 The Remainder and Factor Theorems Objective: To use the remainder theorem in dividing polynomials.
6.1 Using Properties of Exponents What you should learn: Goal1 Goal2 Use properties of exponents to evaluate and simplify expressions involving powers.
§ 6.4 Division of Polynomials. Blitzer, Intermediate Algebra, 5e – Slide #2 Section 6.4 Division of Polynomials Dividing a Polynomial by a Monomial To.
1 © 2010 Pearson Education, Inc. All rights reserved © 2010 Pearson Education, Inc. All rights reserved Chapter 3 Polynomial and Rational Functions.
Dividing Polynomials  Depends on the situation.  Situation I: Polynomial Monomial  Solution is to divide each term in the numerator by the monomial.
HW: Pg #13-61 eoo.
Section 7.3 Products and Factors of Polynomials.
Lesson 2.4, page 301 Dividing Polynomials Objective: To divide polynomials using long and synthetic division, and to use the remainder and factor theorems.
Division and Factors When we divide one polynomial by another, we obtain a quotient and a remainder. If the remainder is 0, then the divisor is a factor.
2.5 Apply the Remainder and Factor Theorems p. 120 How do you divide polynomials? What is the remainder theorem? What is the difference between synthetic.
Polynomial Division and the Remainder Theorem Section 9.4.
Copyright © 2009 Pearson Education, Inc. CHAPTER 4: Polynomial and Rational Functions 4.1 Polynomial Functions and Models 4.2 Graphing Polynomial Functions.
 PERFORM LONG DIVISION WITH POLYNOMIALS AND DETERMINE WHETHER ONE POLYNOMIAL IS A FACTOR OF ANOTHER.  USE SYNTHETIC DIVISION TO DIVIDE A POLYNOMIAL BY.
Warm up  Divide using polynomial long division:  n 2 – 9n – 22 n+2.
UNIT 2 – QUADRATIC, POLYNOMIAL, AND RADICAL EQUATIONS AND INEQUALITIES Chapter 6 – Polynomial Functions 6.3 – Dividing Polynomials.
Multiply polynomials vertically and horizontally
4-3 The Remainder and Factor Theorems
5.5: Apply Remainder and Factor Theorems (Dividing Polynomials) Learning Target: Learn to complete polynomial division using polynomial long division and.
Copyright © 2012 Pearson Education, Inc. Publishing as Addison Wesley 4.3 Polynomial Division; The Remainder and Factor Theorems  Perform long division.
ACTIVITY 31: Dividing Polynomials (Section 4.2, pp )
Chapter 1 Polynomial and Rational Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Dividing Polynomials; Remainder and Factor Theorems.
Date: 2.4 Real Zeros of Polynomial Functions
Dividing Polynomials Section 2.4. Objectives Divide two polynomials using either long division or synthetic division. Use the Factor Theorem to show that.
12/23/ Division and The Remainder Theorem.
3.3 Polynomial and Synthetic Division. Long Division: Let’s Recall.
Section 5.5. Dividing a Polynomial by a Polynomial The objective is to be able to divide a polynomial by a polynomial by using long division. Dividend.
Section 4.3 Polynomial Division; The Remainder and Factor Theorems Copyright ©2013, 2009, 2006, 2001 Pearson Education, Inc.
5-4 Dividing Polynomials Synthetic Division
Let’s look at how to do this using the example: In order to use synthetic division these two things must happen: There must be a coefficient for every.
Mrs. Rivas International Studies Charter School Objectives: 1. Use long division to divide Polynomials.
Polynomial Division Objective: To divide polynomials by long division and synthetic division.
Real Zeros of Polynomial Functions
Products and Factors of Polynomials (part 2 of 2) Section 440 beginning on page 442.
Key Vocabulary: Dividend Divisor Quotient Remainder.
College Algebra Chapter 3 Polynomial and Rational Functions Section 3.3 Division of Polynomials and the Remainder and Factor Theorems.
Dividing Polynomials. Long Division of Polynomials Arrange the terms of both the dividend and the divisor in descending powers of any variable. Divide.
Copyright © Cengage Learning. All rights reserved. 7 Rational Functions.
Polynomial Division.
Dividing Polynomials A review of long division:
Dividing Polynomials.
Copyright © Cengage Learning. All rights reserved.
Synthetic Division.
Aim: How do we divide a polynomial by a binomial?
Section 2.4 Dividing Polynomials; Remainder and Factor Theorems
Apply the Remainder and Factor Theorems Lesson 2.5
4.3 Division of Polynomials
Polynomial Division; The Remainder Theorem and Factor Theorem
Division of Polynomials and the Remainder and Factor Theorems
Do Now  .
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Lesson 2.3 Real Zeros of Polynomial Functions
Warm Up 1. Simplify, then write in standard form (x4 – 5x5 + 3x3) – (-5x5 + 3x3) 2. Multiply then write in standard form (x + 4) (x3 – 2x – 10)
Synthetic Division.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Dividing Polynomials.
Precalculus Essentials
4.3 Synthetic Division Objectives:
Synthetic Division.
Warm up.
Presentation transcript:

3.3: Dividing Polynomials: Remainder and Factor Theorems Long Division of Polynomials 1.Arrange the terms of both the dividend and the divisor in descending powers of any variable. 2.Divide the first term in the dividend by the first term in the divisor. The result is the first term of the quotient. 3.Multiply every term in the divisor by the first term in the quotient. Write the resulting product beneath the dividend with like terms lined up. 4.Subtract the product from the dividend. 5.Bring down the next term in the original dividend and write it next to the remainder to form a new dividend. 6.Use this new expression as the dividend and repeat this process until the remainder can no longer be divided. This will occur when the degree of the remainder (the highest exponent on a variable in the remainder) is less than the degree of the divisor. 1.Arrange the terms of both the dividend and the divisor in descending powers of any variable. 2.Divide the first term in the dividend by the first term in the divisor. The result is the first term of the quotient. 3.Multiply every term in the divisor by the first term in the quotient. Write the resulting product beneath the dividend with like terms lined up. 4.Subtract the product from the dividend. 5.Bring down the next term in the original dividend and write it next to the remainder to form a new dividend. 6.Use this new expression as the dividend and repeat this process until the remainder can no longer be divided. This will occur when the degree of the remainder (the highest exponent on a variable in the remainder) is less than the degree of the divisor.

Example:Long Division of Polynomials Divide 4 – 5x – x 2 + 6x 3 by 3x – 2. Solution We begin by writing the divisor and dividend in descending powers of x. Next, we consider how many times 3x divides into 6x 3. 3x – 2 6x 3 – x 2 – 5x + 4 2x22x2 Divide: 6x 3 /3x = 2x 2. 6x 3 – 4x 2 Multiply. Multiply: 2x 2 (3x – 2) = 6x 3 – 4x 2. Divide: 3x 2 /3x = x. Now we divide 3x 2 by 3x to obtain x, multiply x and the divisor, and subtract. 3x – 2 6x 3 – x 2 – 5x + 4 6x 3 – 4x 2 2x 2 + x 3x 2 – 5x Multiply. Multiply: x(3x – 2) = 3x 2 – 2x. 3x 2 – 2x more Subtract 3x 2 – 2x from 3x 2 – 5x and bring down x – 5x Subtract 6x 3 – 4x 2 from 6x 3 – x 2 and bring down –5x. 3x23x2 3.3: Dividing Polynomials: Remainder and Factor Theorems

Example:Long Division of Polynomials Divide 4 – 5x – x 2 + 6x 3 by 3x – 2. Divide: -3x/3x = -1. Solution Now we divide –3x by 3x to obtain –1, multiply –1 and the divisor, and subtract. 3x – 2 6x 3 – x 2 – 5x + 4 6x 3 – 4x 2 2x 2 + x – 1 3x 2 – 5x + 4 3x 2 – 2x -3x Multiply. Multiply: -1(3x – 2) = -3x x + 2 Subtract -3x + 2 from -3x + 4, leaving a remainder of : Dividing Polynomials: Remainder and Factor Theorems

The Division Algorithm If f (x) and d(x) are polynomials, with d(x) = 0, and the degree of d(x) is less than or equal to the degree of f (x), then there exist unique polynomials q(x) and r(x) such that f (x) = d(x) q(x) + r(x). The remainder, r(x), equals 0 or its is of degree less than the degree of d(x). If r(x) = 0, we say that d(x) divides evenly in to f (x) and that d(x) and q(x) are factors of f (x). If f (x) and d(x) are polynomials, with d(x) = 0, and the degree of d(x) is less than or equal to the degree of f (x), then there exist unique polynomials q(x) and r(x) such that f (x) = d(x) q(x) + r(x). The remainder, r(x), equals 0 or its is of degree less than the degree of d(x). If r(x) = 0, we say that d(x) divides evenly in to f (x) and that d(x) and q(x) are factors of f (x). Dividend Divisor Quotient Remainder 3.3: Dividing Polynomials: Remainder and Factor Theorems

Synthetic Division To divide a polynomial by x – c Example 1. Arrange polynomials in descending powers, with a 0 coefficient for any missing terms. x – 3 x 3 + 4x 2 – 5x Write c for the divisor, x – c. To the right, write the coefficients of the dividend. 3. Write the leading coefficient of the dividend on the bottom row. Bring down Multiply c (in this case, 3) times the value just written on the bottom row. Write the 3 product in the next column in the 2nd row. 1 To divide a polynomial by x – c Example 1. Arrange polynomials in descending powers, with a 0 coefficient for any missing terms. x – 3 x 3 + 4x 2 – 5x Write c for the divisor, x – c. To the right, write the coefficients of the dividend. 3. Write the leading coefficient of the dividend on the bottom row. Bring down Multiply c (in this case, 3) times the value just written on the bottom row. Write the 3 product in the next column in the 2nd row. 1 Multiply by : Dividing Polynomials: Remainder and Factor Theorems

Synthetic Division 5. Add the values in this new column, writing the sum in the bottom row. 6. Repeat this series of multiplications and additions until all columns are filled in. 7. Use the numbers in the last row to write the quotient and remainder in fractional form. The degree of the first term of the quotient is one less than the degree of the first term of the dividend. The final value in the row is the remainder. 5. Add the values in this new column, writing the sum in the bottom row. 6. Repeat this series of multiplications and additions until all columns are filled in. 7. Use the numbers in the last row to write the quotient and remainder in fractional form. The degree of the first term of the quotient is one less than the degree of the first term of the dividend. The final value in the row is the remainder Add Add. Multiply by Add. Multiply by 3. 1x 2 + 7x x – 3 3.3: Dividing Polynomials: Remainder and Factor Theorems

Example:Using Synthetic Division Use synthetic division to divide 5x 3 + 6x + 8 by x + 2. Solution The divisor must be in the form x – c. Thus, we write x + 2 as x – (-2). This means that c = -2. Writing a 0 coefficient for the missing x 2 - term in the dividend, we can express the division as follows: x – (-2) 5x 3 + 0x 2 + 6x + 8. more Now we are ready to set up the problem so that we can use synthetic division Use the coefficients of the dividend in descending powers of x. This is c in x-(-2). 3.3: Dividing Polynomials: Remainder and Factor Theorems

Solution We begin the synthetic division process by bringing down 5. This is following by a series of multiplications and additions. 5. Add: = Add. 7. Add: 8 + (-52) = Add. 4. Multiply: -2(-10) = Multiply: -2(26) = more Bring down Add: 0 + (-10) = Add. 2. Multiply: -2(5) = : Dividing Polynomials: Remainder and Factor Theorems

Solution The numbers in the last row represent the coefficients of the quotient and the remainder. The degree of the first term of the quotient is one less than that of the dividend. Because the degree of the dividend is 3, the degree of the quotient is 2. This means that the 5 in the last row represents 5x 2. Thus, x + 2 5x 3 + 0x 2 + 6x + 8 5x 2 – 10x + 26 – x : Dividing Polynomials: Remainder and Factor Theorems

The Remainder Theorem If the polynomial f (x) is divided by x – c, then the remainder is f (c). 3.3: Dividing Polynomials: Remainder and Factor Theorems

The Factor Theorem Let f (x) be a polynomial. 1.If f (c ) = 0, then x – c is a factor of f (x). 2.If x – c is a factor of f (x), then f ( c) = 0. Let f (x) be a polynomial. 1.If f (c ) = 0, then x – c is a factor of f (x). 2.If x – c is a factor of f (x), then f ( c) = : Dividing Polynomials: Remainder and Factor Theorems

Example:Using the Factor Theorem Solve the equation 2x 3 – 3x 2 – 11x + 6 = 0 given that 3 is a zero of f (x) = 2x 3 – 3x 2 – 11x + 6. Solution We are given that f (3) = 0. The Factor Theorem tells us that x – 3 is a factor of f (x). We’ll use synthetic division to divide f (x) by x – 3. Equivalently, 2x 3 – 3x 2 – 11x + 6 = (x – 3)(2x 2 + 3x – 2) x 3 – 3x 2 – 11x + 6 x – 3 2x 2 + 3x – 2 more 3.3: Dividing Polynomials: Remainder and Factor Theorems

Solution Now we can solve the polynomial equation. The solution set is {-2, ½, 3}. 2x 3 – 3x 2 – 11x + 6 = 0 This is the given equation. (x – 3)(2x 2 + 3x – 2) = 0 Factor using the result from the synthetic division. (x – 3)(2x – 1)(x + 2) = 0 Factor the trinomial. x – 3 = 0 or 2x – 1 = 0 or x + 2 = 0 Set each factor equal to 0. x = 3 x = ½ x = -2 Solve for x. 3.3: Dividing Polynomials: Remainder and Factor Theorems