19: Laws of Indices © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.

Slides:



Advertisements
Similar presentations
“Teach A Level Maths” Vol. 1: AS Core Modules
Advertisements

“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
Laws of Indices or Powers © Christine Crisp. Laws of Indices Generalizing this, we get: Multiplying with Indices e.g.1 e.g.2.
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
10: Polynomials © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
1: Straight Lines and Gradients © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
50: Vectors © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
12: The Quotient Rule © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
6: Roots, Surds and Discriminant © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
46: Indices and Laws of Logarithms
“Teach A Level Maths” Vol. 1: AS Core Modules
39: Trigonometric ratios of 3 special angles © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
11: The Rule for Differentiation © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
19: Laws of Indices © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
9a: Differentiating Harder Products © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
“Teach A Level Maths” Vol. 1: AS Core Modules
6: Discriminant © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
Arranging and Choosing © Christine Crisp “Teach A Level Maths” Statistics 1.
© Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules 6: Differentiating.
24: Indefinite Integration © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
46: Indices and Laws of Logarithms
47: More Logarithms and Indices
“Teach A Level Maths” Vol. 1: AS Core Modules
3: Quadratic Expressions Expanding Brackets and Factorisation © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
5: The Chain Rule © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
4: Translations and Completing the Square © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
25: Definite Integration © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
8: Simultaneous Equations and Intersections © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
The Gradient at a point on a Curve
3: Quadratic Expressions Expanding Brackets and
Laws of Indices.
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
Presentation made by: Ms Sheema Aftab.
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
More Logarithms and Indices
“Teach A Level Maths” Vol. 1: AS Core Modules
Laws of Indices Given by Ms Sheema For Class 8.
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
47: More Logarithms and Indices
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
The following slides contain repeats of information on earlier slides, shown without colour, so that they can be printed and photocopied. For most purposes.
Negative and Rational Indices all slides © Christine Crisp
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
46: Indices and Laws of Logarithms
Presentation transcript:

19: Laws of Indices © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules

Laws of Indices Generalizing this, we get: Multiplying with Indices e.g.1 e.g.2

Laws of Indices If m and n are not integers, a must be positive e.g.3 Multiplying with Indices

Laws of Indices Generalizing this, we get: Dividing with Indices Cancel e.g.

Laws of Indices Powers of Powers e.g.by rule (1)

Laws of Indices Exercises Without using a calculator, use the laws of indices to express each of the following as an integer

Laws of Indices A Special Case e.g. Simplify Using rule (3) Also,

Laws of Indices e.g. Simplify Also, Using rule ( 2 ) So, Generalizing this, we get: A Special Case

Laws of Indices Another Special Case e.g. Simplify Using rule (3) Also,

Laws of Indices e.g. Simplify Using rule (3) Also, So, Another Special Case

Laws of Indices Generalizing this, we get: e.g. 1 e.g. 2 Another Special Case

Laws of Indices Rational Numbers A rational number is one that can be written as where p and q are integers and e.g.and are rational numbers are not rational numbersand

Laws of Indices The definition of a rational index is that p is the power q is the root e.g.1 e.g.2 e.g.3 Rational Numbers

Laws of Indices SUMMARY The following are the laws of indices:

Laws of Indices Exercises Without using a calculator, use the laws of indices to express each of the following as an integer

Laws of Indices Exercises Without using a calculator, use the laws of indices to express each of the following as an integer or fraction

Laws of Indices

The following slides contain repeats of information on earlier slides, shown without colour, so that they can be printed and photocopied. For most purposes the slides can be printed as “Handouts” with up to 6 slides per sheet.

Laws of Indices SUMMARY The following are the laws of indices:

Laws of Indices Examples

Laws of Indices