0 APS-Sherwood Texas 2006-April 21-24 Study of nonlinear kinetic effects in Stimulated Raman Scattering using semi- Lagrangian Vlasov codes Alain Ghizzo.

Slides:



Advertisements
Similar presentations
Progress and Plans on Magnetic Reconnection for CMSO For NSF Site-Visit for CMSO May1-2, Experimental progress [M. Yamada] -Findings on two-fluid.
Advertisements

Chapter 1 Electromagnetic Fields
Particle acceleration in a turbulent electric field produced by 3D reconnection Marco Onofri University of Thessaloniki.
Sub-cycle pulse propagation in a cubic medium Ajit Kumar Department of Physics, Indian Institute of Technology, Delhi, NONLINEAR PHYSICS. THEORY.
Contour plots of electron density 2D PIC in units of  [n |e|] cr wake wave breaking accelerating field laser pulse Blue:electron density green: laser.
Ion Pickup One of the fundamental processes in space plasma physics.
INTRODUCTION OF WAVE-PARTICLE RESONANCE IN TOKAMAKS J.Q. Dong Southwestern Institute of Physics Chengdu, China International School on Plasma Turbulence.
Alfvén-cyclotron wave mode structure: linear and nonlinear behavior J. A. Araneda 1, H. Astudillo 1, and E. Marsch 2 1 Departamento de Física, Universidad.
Modeling Generation and Nonlinear Evolution of VLF Waves for Space Applications W.A. Scales Center of Space Science and Engineering Research Virginia Tech.
Modeling Generation and Nonlinear Evolution of Plasma Turbulence for Radiation Belt Remediation Center for Space Science & Engineering Research Virginia.
Nonlinear Evolution of Whistler Turbulence W.A. Scales, J.J. Wang, and O. Chang Center of Space Science and Engineering Research Virginia Tech L. Rudakov,
Time-resolved analysis of large amplitude collective motion in metal clusters Metal clusters : close « cousins » of nuclei Time resolved : « Pump Probe.
ITER reflectometry diagnostics operation limitations caused by strong back and small angle scattering E.Gusakov 1, S. Heuraux 2, A. Popov 1 1 Ioffe Institute,
Waves, Fluctuations and Turbulence General concept of waves Landau damping Alfven waves Wave energy Collisions and fluctuations.
Hybrid Simulation of Ion-Cyclotron Turbulence Induced by Artificial Plasma Cloud in the Magnetosphere W. Scales, J. Wang, C. Chang Center for Space Science.
Computational Modeling Capabilities for Neutral Gas Injection Wayne Scales and Joseph Wang Virginia Tech Center for Space Science and Engineering.
Francesco Valentini, Pierluigi Veltri Dipartimento di Fisica, Università degli Studi della Calabria (Italy) Dipartimento di Fisica, Università degli Studi.
Weak Turbulence Theories Quasilinear Theory. Primary Objective of Early Efforts To understand the saturation of bump-on-tail instability To study the.
the equation of state of cold quark gluon plasmas
Opening Remarks Why the details?
IV Congresso Italiano di Fisica del Plasma Firenze, Gennaio 2004 Francesco Valentini Dipartimento di Fisica, Università della Calabria Rende (CS)
2. Centre de PhysiqueThéorique 1. DAM; Bruyères-le-Châtel DCSA 1. : M. Casanova 1., 2. : Thomas Fouquet 2. : S. Hüller, D. Pesme HEDP Summer School UC.
Driven autoresonant three-oscillator interactions Oded Yaakobi 1,2 Lazar Friedland 2 Zohar Henis 1 1 Soreq Research Center, Yavne, Israel. 2 The Hebrew.
Pump-Probe Spectroscopy Chelsey Dorow Physics 211a.
Computationally efficient description of relativistic electron beam transport in dense plasma Oleg Polomarov*, Adam Sefkov**, Igor Kaganovich** and Gennady.
UCLA Simulations of Stimulated Raman Scattering in One and Two Dimensions B. J. Winjum 1*, F. S. Tsung 1, W. B. Mori 1,2, A. B. Langdon 3 1 Dept. Physics.
Consider a time dependent electric field E(t) acting on a metal. Take the case when the wavelength of the field is large compared to the electron mean.
Nonlinear Frequency Chirping of Alfven Eigenmode in Toroidal Plasmas Huasen Zhang 1,2 1 Fusion Simulation Center, Peking University, Beijing , China.
Wave-Particle Interaction in Collisionless Plasmas: Resonance and Trapping Zhihong Lin Department of Physics & Astronomy University of California, Irvine.
Nonlinear VLF Wave Physics in the Radiation Belts Chris Crabtree Guru Ganguli Erik Tejero Naval Research Laboratory Leonid Rudakov Icarus Research Inc.
Kinetic Effects on the Linear and Nonlinear Stability Properties of Field- Reversed Configurations E. V. Belova PPPL 2003 APS DPP Meeting, October 2003.
PIC simulations of the propagation of type-1 ELM-produced energetic particles on the SOL of JET D. Tskhakaya 1, *, A. Loarte 2, S. Kuhn 1, and W. Fundamenski.
Waves and solitons in complex plasma and the MPE - UoL team D. Samsonov The University of Liverpool, Liverpool, UK.
Introduction to the Particle In Cell Scheme for Gyrokinetic Plasma Simulation in Tokamak a Korea National Fusion Research Institute b Courant Institute,
Particle Distribution Modification by TAE mode and Resonant Particle Orbits POSTECH 1, NFRI 1,2 M.H.Woo 1, C.M.Ryu 1, T.N.Rhee 1,,2.
Recent advances in wave kinetics
Collective excitations in a dipolar Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD.
Stability Properties of Field-Reversed Configurations (FRC) E. V. Belova PPPL 2003 International Sherwood Fusion Theory Conference Corpus Christi, TX,
Phase Separation and Dynamics of a Two Component Bose-Einstein Condensate.
The propagation of a microwave in an atmospheric pressure plasma layer: 1 and 2 dimensional numerical solutions Conference on Computation Physics-2006.
A Self-consistent Model of Alfvén Wave Phase Mixing G.KIDDIE, I. DE MOORTEL, P.CARGILL & A.HOOD.
1 Turbulent Generation of Large Scale Magnetic Fields in Unmagnetized Plasma Vladimir P.Pavlenko Uppsala University, Uppsala, Sweden.
Surface Plasmon Resonance
PHOTONS AND EVOLUTION OF A CHEMICALLY EQUILIBRATING AND EXPANDING QGP AT FINITE BARYON DENSITY Shanghai Institute of Applied Physics Jiali Long, Zejun.
Lecture 3. Full statistical description of the system of N particles is given by the many particle distribution function: in the phase space of 6N dimensions.
GWENAEL FUBIANI L’OASIS GROUP, LBNL 6D Space charge estimates for dense electron bunches in vacuum W.P. LEEMANS, E. ESAREY, B.A. SHADWICK, J. QIANG, G.
Intermittent Oscillations Generated by ITG-driven Turbulence US-Japan JIFT Workshop December 15 th -17 th, 2003 Kyoto University Kazuo Takeda, Sadruddin.
Kadanoff-Baym Approach to Thermalization of Quantum FIelds Akihiro Nishiyama Kyoto Sangyo University Feb. 9, Collaboration with Yoshitaka Hatta.
INTENSITY LIMITATIONS (Space Charge and Impedance) M. Zobov.
18 Nov 2010 Waves + Reconnection=? U of Warwick Astronomy Unit, School of Mathematical Sciences Vlasov-Maxwell and PIC,
Simulations of turbulent plasma heating by powerful electron beams Timofeev I.V., Terekhov A.V.
Electrostatic fluctuations at short scales in the solar-wind turbulent cascade. Francesco Valentini Dipartimento di Fisica and CNISM, Università della.
Solar energetic particle simulations in SEPServer How to deal with scale separation of thirteen orders of magnitude R. Vainio, A. Afanasiev, J. Pomoell.
GEM Student Tutorial: GGCM Modeling (MHD Backbone)
Physics of Hot, Dense Plasmas
Workshop on Fundamental Physics
Peter Stoltz Tech-X Corp. collaborators: J. Cary, P. Messmer (Tech-X)
Chapter V Interacting Fields Lecture 1 Books Recommended:
101° Congresso della societa italiana fisica
Nonequilibrium statistical mechanics of electrons in a diode
Dmitri Uzdensky (University of Colorado Boulder)
Kinetic & Fluid descriptions of interchange turbulence
Simulations of Ionospheric Turbulence near the Upper Hybrid Layer
dark matter Properties stable non-relativistic non-baryonic
Two-fluid Collisionless MHD
Marco Polo, Daniel Felinto and Sandra Vianna Departamento de Física
Two-fluid Collisionless MHD
Electron Acoustic Waves (EAW) EAW’s are novel kinetic waves that exist only because nonlinear trapping turns off Landau damping. We recently provided.
Presentation transcript:

0 APS-Sherwood Texas 2006-April Study of nonlinear kinetic effects in Stimulated Raman Scattering using semi- Lagrangian Vlasov codes Alain Ghizzo 1, P. Bertrand 1, T.W. Johnston 2, M. Albrecht-Marc 1,T. Reveillé 1 1. LPMIA, CNRS-UMR7040, Université Henri Poincaré, Nancy, BP 239, F Vandoeuvre, France 2. I.N.R.S. Energie et Matériaux, Varennes, Québec

1 APS-Sherwood Texas 2006-April Topics 1.Vlasov plasmas 2.Vlasov codes and PIC codes 3.Application I: Resonant wave particle interaction 4.Application II: SRS-B in optical mixing 5.Conclusions

2 APS-Sherwood Texas 2006-April Topics 1.Vlasov plasmas 2.Vlasov codes and PIC codes 3.Application I: Resonant wave particle interaction 4.Application II: SRS-B in optical mixing 5.Conclusions

3 APS-Sherwood Texas 2006-April Introduction. Vlasov models have long been used to study collisionless plasmas. Vlasov codes: powerful tool for studying in details the particle dynamics due to very fine resolution in phase space. Questions for applications: Need for a kinetic model? PIC or Vlasov simulation?

4 APS-Sherwood Texas 2006-April Vlasov plasmas: collective effects A dichotomy experiment: (e,m) -> 2(e/2, m/2) -> 4(e/4, m/4) -> etc… = dimensionless parameter, - divided by 2 at each dichotomy - « graininess parameter »

5 APS-Sherwood Texas 2006-April Topics 1.Vlasov plasmas 2.Vlasov codes and PIC codes 3.Application I: Resonant wave particle interaction 4.Application II: SRS-B in optical mixing 5.Conclusions

6 APS-Sherwood Texas 2006-April Comparison PIC-Vlasov (1) Vlasov Codes : real space dimension is the graininess due to particules PIC Codes : momentum space dimension : sampling of momentum space in each direction Sampling the x-space needs Real space X momentum space

7 APS-Sherwood Texas 2006-April Comparison PIC-Vlasov (2) Assume the same CPU time to push a particle (PIC) to move a phase space mesh point (Vlasov) The ratio of the computationnal effort between Vlasov and PIC depends on PIC graininess (must be as low as possible) Sampling of momentum space (must be as high as possible)

8 APS-Sherwood Texas 2006-April Comparison PIC-Vlasov (3) D v =1D v =2D v =3 g PIC = g PIC = g PIC = Prefer PIC Prefer Vlasov

9 APS-Sherwood Texas 2006-April Topics 1.Vlasov plasmas 2.Vlasov codes and PIC codes 3.Application I: Resonant wave particle interaction 4.Application II: SRS-B in optical mixing 5.Conclusions

10 APS-Sherwood Texas 2006-April Stimulated Raman Scattering Using Coulomb gauge with Vacuum PLASMA Scattered wave (1) Plasma wave (2) LASER Pump wave (0) Vlasov equation for electrons1D momentum space

11 APS-Sherwood Texas 2006-April SRS : 3 mode coupling Vacuum PLASMA Scattered wave (1) Plasma wave (2) LASER Pump wave (0) Quasi particles (photons, plasmons) Energy conservation Momentum conservation Electron plasma in a fixed ion homogeneous background

12 APS-Sherwood Texas 2006-April Three mode coupling : a fluid description Scalar potential (Plasma mode) Multiple time-space scale expansion of fluid equations Vector potential (electromagnetic modes)

13 APS-Sherwood Texas 2006-April Three mode coupling : a fluid description Hydrodynamic equations for electrons Assume slowly varying envelopes: i.e. with

14 APS-Sherwood Texas 2006-April Three mode coupling : a fluid description Envelope equations + periodic conditions  Action conservation Energy density of mode i Action density of mode i photon (0)  photon (1)  plasmon (2)

15 APS-Sherwood Texas 2006-April Time evolution: pump + scattered Pump wave action Scattered wave action Good conservation Check the fluid predictions against a fully kinetic Vlasov simulation

16 APS-Sherwood Texas 2006-April Time evolution : pump + plasma pump plasma Poor Conservation !

17 APS-Sherwood Texas 2006-April Phase space portraits (1) Color scale

18 APS-Sherwood Texas 2006-April Phase space portraits (2) Color scale

19 APS-Sherwood Texas 2006-April Phase space portraits (3) Color scale

20 APS-Sherwood Texas 2006-April Accounting for « non fluid » particles Good conservation Compute: Kinetic energy density above the lower separatrix: Divide by plasma wave frequency:

21 APS-Sherwood Texas 2006-April Topics 1.Vlasov plasmas 2.Vlasov codes and PIC codes 3.Application I: Resonant wave particle interaction 4.Application II: SRS-B in optical mixing 5.Conclusions

22 APS-Sherwood Texas 2006-April SRS-B in the « kinetic » regime (1) SRS-B reflectivity presents a bursting behavior Nonlinear frequency shift - G.J. Morales and T.M. O’Neil, PRL 28, 417 (1972) -

23 APS-Sherwood Texas 2006-April SRS-B in the « kinetic » regime (2) Langmuir wave induced by SRS-B process Vortex-merging leading to weak turbulence BGK-like self- sustained structures (persisting over a long time)

24 APS-Sherwood Texas 2006-April Topics 1.Vlasov plasmas 2.Vlasov codes and PIC codes 3.Application I: Resonant wave particle interaction 4.Application II: SRS-B in optical mixing 5.Conclusions

25 APS-Sherwood Texas 2006-April Conclusions Vlasov codes as compared to PIC codes lack of numerical noise good resolution in phase space provided the dimension of velocity space is as low as possible. Kinetic effects in plasmas allow more phenomena than are found using only fluid theory with « ad hoc » kinetic damping.