Chapter 6 outline r 6.1 Multimedia Networking Applications r 6.2 Streaming stored audio and video m RTSP r 6.3 Real-time Multimedia: Internet Phone Case.

Slides:



Advertisements
Similar presentations
Streaming Video over the Internet
Advertisements

MM Networking Applications
1 Multimedia Communication Multimedia Systems Summary: r Multimedia Networking Applications: Requirements r Current Networks m Limitations & Evolution.
1 Multimedia Networking EECS 489 Computer Networks Z. Morley Mao Monday March 26, 2007 Acknowledgement: Some.
29.1 Chapter 29 Multimedia Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
29.1 Chapter 29 Multimedia Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
TCP/IP Protocol Suite 1 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 25 Multimedia.
1 Multimedia Networking An Overview Done by Abdallah Quffa Khaleel Al Najjar Supervised by: Mr. Ashraf Y. MAghari.
19 – Multimedia Networking. Multimedia Networking7-2 Multimedia and Quality of Service: What is it? multimedia applications: network audio and video (“continuous.
1 School of Computing Science Simon Fraser University CMPT 820: Multimedia Systems Network Protocols for Multimedia Applications Instructor: Dr. Mohamed.
User Control of Streaming Media: RTSP
Multimedia Streaming Protocols1 Multimedia Streaming: Jun Lu Xinran (Ryan) Wu CSE228 Multimedia Systems Challenges and Protocols.
Chapter 6 outline r 6.1 Multimedia Networking Applications r 6.2 Streaming stored audio and video m RTSP r 6.3 Real-time, Interactive Multimedia: Internet.
Multimedia Networking: An Overview
Application layer (continued) Week 4 – Lecture 2.
Multimedia Applications
CS 360 – Spring 2007 Pacific University Multimedia Content (Streaming Media) Session “Layer” section Feb 2007.
Chapter 6: Multimedia Networking
1 CSE 401N Multimedia Networking Lecture Multimedia, Quality of Service: What is it? Multimedia applications: network audio and video network provides.
Chapter 6: Multimedia Networking
Multimedia Applications r Multimedia requirements r Streaming r Phone over IP r Recovering from Jitter and Loss r RTP r Diff-serv, Int-serv, RSVP.
Multimedia Computer Networks 10/02/02 Xavier Appé.
Computer Networking Multimedia.
CS640: Introduction to Computer Networks
CS 218 F 2003 Nov 3 lecture:  Streaming video/audio  Adaptive encoding (eg, layered encoding)  TCP friendliness References: r J. Padhye, V.Firoiu, D.
RTSP Real Time Streaming Protocol
CIS679: RTP and RTCP r Review of Last Lecture r Streaming from Web Server r RTP and RTCP.
6: Multimedia Networking6a-1 Chapter 6: Multimedia Applications r Multimedia requirements r Streaming r Phone over IP r Recovering from Jitter and Loss.
Multimedia and QoS#1#1 Multimedia Applications. Multimedia and QoS#2#2 Multimedia Applications r Multimedia requirements r Streaming r Recovering from.
Chapter 7 Multimedia Applications
7: Multimedia Networking7-1 Chapter 7 Multimedia Networking A note on the use of these ppt slides: We’re making these slides freely available to all (faculty,
Streaming Stored Audio and Video (1) and Video (1) Advanced Multimedia University of Palestine University of Palestine Eng. Wisam Zaqoot Eng. Wisam Zaqoot.
Quality of Service in the Internet The slides of part 1-3 are adapted from the slides of chapter 7 published at the companion website of the book: Computer.
Chapter 5: Summary r principles behind data link layer services: m error detection, correction m multiple access protocols m link layer addressing, ARP.
1 How Streaming Media Works Bilguun Ginjbaatar IT 665 Nov 14, 2006.
Multimedia Over IP: RTP, RTCP, RTSP “Computer Science” Department of Informatics Athens University of Economics and Business Λουκάς Ελευθέριος.
TCP/IP Protocol Suite 1 Chapter 25 Upon completion you will be able to: Multimedia Know the characteristics of the 3 types of services Understand the methods.
CS640: Introduction to Computer Networks Aditya Akella Lecture 19 - Multimedia Networking.
What is Multimedia? Function: noun plural but singular or plural in construction Date: 1950 : a technique (as the combining of sound, video, and text)
Multimedia, Quality of Service: What is it?
1 Multimedia Networking R. Yang. 2 Outline r Admin. and review  Introduction to multimedia networking r An architecture of stored multimedia r Network.
CMPT365 Multimedia Systems 1 Multimedia Networking/Communications Spring 2015 CMPT 365 Multimedia Systems.
03/11/2015 Michael Chai; Behrouz Forouzan Staffordshire University School of Computing Streaming 1.
Lab Assignment 15/ INF5060: Multimedia data communication using network processors.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Chapter 28 Multimedia.
Chapter 28. Network Management Chapter 29. Multimedia
Multimedia streaming Application Anandi Giridharan Electrical Communication Engineering, Indian Institute of Science, Bangalore – , India Querying.
Computer Networking Multimedia. 11/15/20052 Outline Multimedia requirements Streaming Phone over IP Recovering from Jitter and Loss RTP QoS Requirements.
Internet multimedia: simplest approach audio, video not streamed: r no, “pipelining,” long delays until playout! r audio or video stored in file r files.
Presented by : BEN AMOR Adel MAKNI Mahmoud Ramzi
7: Multimedia Networking7-1 Chapter 7 Multimedia Networking Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose,
Real Time Streaming Protocol (RTSP)
Multimedia: Conferencing 7-1. MM Networking Applications Fundamental characteristics: typically delay sensitive – end-to-end delay – delay jitter loss.
BITM1113- Multimedia Systems
TCP/IP Protocol Suite 1 Chapter 25 Upon completion you will be able to: Multimedia Know the characteristics of the 3 types of services Understand the methods.
Ch 6. Multimedia Networking Myungchul Kim
Tutorial 11 Solutions. Question 1 Q1. What is meant by interactivity for streaming stored audio/video? What is meant by interactivity for real-time interactive.
Multimedia Streaming I. Fatimah Alzahrani. Introduction We can divide audio and video services into three broad categories: streaming stored audio/video,
IT 424 Networks2 IT 424 Networks2 Ack.: Slides are adapted from the slides of the book: “Computer Networking” – J. Kurose, K. Ross Chapter 4: Multimedia.
Multimedia Networking7-1 Chapter 7 Multimedia Networking A note on the use of these ppt slides: We’re making these slides freely available to all (faculty,
Chapter 13: Multimedia and Networking BITM1113- Multimedia Systems.
Chapter 7 Multimedia Networking
19 – Multimedia Networking
Chapter 29 Multimedia Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Multimedia Applications
Chapter 25 Multimedia TCP/IP Protocol Suite
CSCD 433/533 Advanced Networks
Multimedia networking: outline
Multimedia networking: outline
Multimedia Applications
Presentation transcript:

Chapter 6 outline r 6.1 Multimedia Networking Applications r 6.2 Streaming stored audio and video m RTSP r 6.3 Real-time Multimedia: Internet Phone Case Study r 6.4 Protocols for Real- Time Interactive Applications m RTP,RTCP m SIP r 6.5 Beyond Best Effort r 6.6 Scheduling and Policing Mechanisms r 6.7 Integrated Services r 6.8 RSVP r 6.9 Differentiated Services

Streaming Stored Multimedia Application-level streaming techniques for making the best out of best effort service: m client side buffering m use of UDP versus TCP m multiple encodings of multimedia r jitter removal r decompression r error concealment r graphical user interface w/ controls for interactivity Media Player

Internet multimedia: simplest approach audio, video not streamed: r no, “pipelining,” long delays until playout! r audio or video stored in file r files transferred as HTTP object m received in entirety at client m then passed to player

Internet multimedia: streaming approach r browser GETs metafile r browser launches player, passing metafile r player contacts server r server streams audio/video to player

Streaming from a streaming server r This architecture allows for non-HTTP protocol between server and media player r Can also use UDP instead of TCP.

constant bit rate video transmission Cumulative data time variable network delay client video reception constant bit rate video playout at client client playout delay buffered video Streaming Multimedia: Client Buffering r Client-side buffering, playout delay compensate for network-added delay, delay jitter

Streaming Multimedia: Client Buffering r Client-side buffering, playout delay compensate for network-added delay, delay jitter buffered video variable fill rate, x(t) constant drain rate, d

Streaming Multimedia: UDP or TCP? UDP r server sends at rate appropriate for client (oblivious to network congestion!) m often sending rate = encoding rate = constant rate m then, buffer filling rate = constant rate - packet loss r short playout delay (2-5 seconds) to compensate for network delay jitter r error recover: time permitting TCP r send at maximum possible rate under TCP r filling rate fluctuates due to TCP congestion control r larger playout delay: smooth TCP delivery rate r HTTP/TCP passes more easily through firewalls

Streaming Multimedia: client rate(s) Q: how to handle different client receive rate capabilities? m 28.8 Kbps dialup m 100Mbps Ethernet A: server stores, transmits multiple copies of video, encoded at different rates 1.5 Mbps encoding 28.8 Kbps encoding

User Control of Streaming Media: RTSP HTTP r Does not target multimedia content r No commands for fast forward, etc. RTSP: RFC 2326 r Client-server application layer protocol. r For user to control display: rewind, fast forward, pause, resume, repositioning, etc… What it doesn’t do: r does not define how audio/video is encapsulated for streaming over network r does not restrict how streamed media is transported; it can be transported over UDP or TCP r does not specify how the media player buffers audio/video

More about RTSP r Text-based protocol, like HTTP r Transport protocol independent r Supports any session description (sdp, xml, etc.) r Similar design as HTTP with differences yet! m client  server and server  client requests m server maintains a « session state » m data carried out-of-band

RTSP: out of band control FTP uses an “out-of-band” control channel: r A file is transferred over one TCP connection. r Control information (directory changes, file deletion, file renaming, etc.) is sent over a separate TCP connection. r The “out-of-band” and “in- band” channels use different port numbers. RTSP messages are also sent out-of-band: r RTSP control messages use different port numbers than the media stream: out-of-band. m Port 554 r The media stream is considered “in-band”.

RTSP Example Scenario: r metafile communicated to web browser r browser launches player r player sets up an RTSP control connection, data connection to streaming server

Metafile Example Twister <track type=audio e="PCMU/8000/1" src = "rtsp://audio.example.com/twister/audio.en/lofi"> <track type=audio e="DVI4/16000/2" pt="90 DVI4/8000/1" src="rtsp://audio.example.com/twister/audio.en/hifi"> <track type="video/jpeg" src="rtsp://video.example.com/twister/video">

RTSP methods r Major methods m SETUP:server allocates resources for a stream and starts an RTSP session m PLAY:starts data tx on a stream m PAUSE:temporarily halts a stream m TEARDOWN:free resources of the stream, no RTSP session on server any more r Additional methods m OPTIONS:get available methods m ANNOUNCE:change description of media object m DESCRIBE:get low level descr. of media object m RECORD:server starts recording a stream m REDIRECT:redirect client to new server m SET_PARAMETER:device or encoding control

RTSP Operation

RTSP Exchange Example C: SETUP rtsp://audio.example.com/twister/audio RTSP/1.0 Transport: rtp/udp; compression; port=3056; mode=PLAY S: RTSP/ OK Session 4231 C: PLAY rtsp://audio.example.com/twister/audio.en/lofi RTSP/1.0 Session: 4231 Range: npt=0- C: PAUSE rtsp://audio.example.com/twister/audio.en/lofi RTSP/1.0 Session: 4231 Range: npt=37 C: TEARDOWN rtsp://audio.example.com/twister/audio.en/lofi RTSP/1.0 Session: 4231 S: OK