RM due to magnetic fields in the cosmic web and SKA observations Takuya Akahori A KRCF KASI (-2012.9) A JSPS Sydney U. (2012.10-) 2012.8.20-23.

Slides:



Advertisements
Similar presentations
Magnetic Field Puzzles From Our Own Backyard Jo-Anne Brown & Russ Taylor.
Advertisements

HI Stacking: Past, Present and Future HI Pathfinder Workshop Perth, February 2-4, 2011 Philip Lah.
Observations of turbulence in the magneto-ionized ISM on subparsec scales Marijke Haverkorn.
S.Mereghetti - Simbol-X: The hard X-ray Universe in focus - Bologna -15/5/20071 Studying the Galactic Ridge Emission with SIMBOL-X Sandro Mereghetti IASF.
Hierarchical Clustering Leopoldo Infante Pontificia Universidad Católica de Chile Reunión Latinoamericana de Astronomía Córdoba, septiembre 2001.
FastICA as a LOFAR-EoR Foreground Cleaning Technique Filipe Abdalla and Emma Woodfield University College London with Saleem Zaroubi, Vibor Jelic, Panos.
SKA-KR Workshop 2010, KASI, Daejeon, Korea Akahori 1/20 Study of Faraday Rotation due to the Intergalactic Magnetic Field ~Preparing the Era.
Early Polarisation Science with ASKAP Bryan Gaensler, Tom Landecker, Russ Taylor and the POSSUM team askap.org/possum.
Study of Cosmic Magnetic Fields with Square Kilometer Array Keitaro Takahashi Nagoya University workshop 2010.
HI from z ~ 0 – 1 with FAST D.J. Pisano West Virginia University NRAO.
Magnetic Field Workshop November 2007 Constraints on Astrophysical Magnetic Fields from UHE Cosmic Rays Roger Clay, University of Adelaide based on work.
The SIRTF SWIRE Survey SWIRE is a shallow/moderate depth survey of ~70 sq. degrees in all 7 SIRTF imaging bands 5  sensitivities: 17.5 mJy 160  m 2.75.
Taotao Fang UC Berkeley Collaborator: R. Croft, W. Sanders, J. Houck, R. Dave, N, Katz, D. Weinberg, L. Hernquist Soft X-ray Emission from the Warm-Hot.
July 7, 2008SLAC Annual Program ReviewPage 1 Weak Lensing of The Faint Source Correlation Function Eric Morganson KIPAC.
Universe in a box: simulating formation of cosmic structures Andrey Kravtsov Department of Astronomy & Astrophysics Center for Cosmological Physics (CfCP)
Polarization 2005, Orsay, 13/09/2005 Depolarization canals in Milky Way radio maps Anvar Shukurov and Andrew Fletcher School of Mathematics and Statistics,
Weak-Lensing selected, X-ray confirmed Clusters and the AGN closest to them Dara Norman NOAO/CTIO 2006 November 6-8 Boston Collaborators: Deep Lens Survey.
Growth of Structure Measurement from a Large Cluster Survey using Chandra and XMM-Newton John R. Peterson (Purdue), J. Garrett Jernigan (SSL, Berkeley),
Detection of the effect of cosmological large- scale structure on the orientation of galaxies Ignacio Trujillo, Conrado Carretero & Santiago G. Patiri.
T.G.Arshakian MPI für Radioastronomie (Bonn) Exploring the weak magnetic fields with LOFAR.
Magnetic Jets and Lobes in Cosmological MHD Hui Li Los Alamos National Laboratory NSF/DOE Center for Magnetic Self-Organization (CMSO) Collaborators: H.
Contour statistics, depolarization canals and interstellar turbulence Anvar Shukurov School of Mathematics and Statistics, Newcastle, U.K.
Angular clustering and halo occupation properties of COSMOS galaxies Cristiano Porciani.
Cosmological MHD Hui Li Collaborators: S. Li, M. Nakamura, S. Diehl, B. Oshea, P. Kronberg, S. Colgate (LANL) H. Xu, M. Norman (UCSD), R. Cen (Princeton)
Study Systematics on the ICM metallicity measurements Elena Rasia Chandra Fellow Physics Department, University of Michigan, Ann Arbor Columbus, Great.
Missing baryons and missing metals in galaxies: clues from the Milky Way Smita Mathur The Ohio State University With Anjali Gupta, Yair Krongold, Fabrizio.
The Structure of the Universe AST 112. Galaxy Groups and Clusters A few galaxies are all by themselves Most belong to groups or clusters Galaxy Groups:
Masami Ouchi (Space Telescope Science Institute) for the SXDS Collaboration Cosmic Web Made of 515 Galaxies at z=5.7 Kona 2005 Ouchi et al ApJ, 620,
Status of Korean Participation in the SKA Project Minho Choi (KASI) SKA Japan Workshop NAOJ, Mitaka.
Radio Remote Sensing of the Corona and the Solar Wind Steven R. Spangler University of Iowa.
LOFAR Key Science Project Cosmic Magnetism in the Nearby Universe (MKSP) LOFAR Key Science Project Cosmic Magnetism in the Nearby Universe (MKSP)
Cosmological Tests using Redshift Space Clustering in BOSS DR11 (Y. -S. Song, C. G. Sabiu, T. Okumura, M. Oh, E. V. Linder) following Cosmological Constraints.
Early Polarization Science with ASKAP – Galactic Pole Takuya Akahori Sydney Institute for Astronomy (SIfA), The University of Sydney, Australia JSPS Postdoctoral.
Cosmic magnetism ( KSP of the SKA) understand the origin and evolution of magnetism in the Galaxy, extragalactic objects, clusters and inter-galactic/-cluster.
Structure Function of Rotation Measure toward High Galactic Latitudes Takuya Akahori 1,2 1 Radio Astronomy Division, KASI 2 Research Fellow for Young Scientist,
The clustering of galaxies detected by neutral hydrogen emission Sean Passmoor Prof. Catherine Cress Image courtesy of NRAO/AUI and Fabian Walter, Max.
Galaxy clustering II 2-point correlation function 5 Feb 2013.
Constraining cluster abundances using weak lensing Håkon Dahle Institute of Theoretical Astrophysics, University of Oslo.
Great Barriers in High Mass Star Formation, Townsville, Australia, Sept 16, 2010 Patrick Koch Academia Sinica, Institute of Astronomy and Astrophysics.
First Result of Urumqi 6cm Polarization Observations: Xiaohui Sun, Wolfgang Reich JinLin Han, Patricia Reich, Richard Wielebinski Partner Group of MPIfR.
High redshift cluster search (SA22 field) KIAS SSG workshop Jae-Woo Kim (SNU) M. Im, S.-K. Lee & M. Hyun (SNU)
Magnetic fields in the Galaxy via Faraday effect: Future prospects with ASKAP and the SKA Lisa Harvey-Smith Collaborators: Bryan CSIRO SKA Project ScientistGaensler.
Propagation of Ultra-high Energy Cosmic Rays in Local Magnetic Fields Hajime Takami (Univ. of Tokyo) Collaborator: Katsuhiko Sato (Univ. of Tokyo, RESCEU)
Cosmic magnetism ( KSP of the SKA)‏ understand the origin and evolution of magnetism in the Galaxy, extragalactic objects, clusters and inter-galactic/-cluster.
Kashi1 Radio continuum observations of the Sombrero galaxy NGC4594 (M104) and other edge-on spirals Marita Krause MPIfR, Bonn Michael Dumke ESO,
Simulating the SZ Sky Predictions for Upcoming Sunyaev-Zel’dovich Effect Galaxy Cluster Surveys Eric J. Hallman CASA, University of Colorado 16 February,
INTEGRAL insight into the inner part of the Galaxy. High-mass X-ray binaries and Galactic spiral structure A.Lutovinov, M.Revnivtsev, M.Gilfanov, S.Molkov,
Dongsu Ryu (CNU), Magnetism Team in Korea
Andrii Elyiv and XMM-LSS collaboration The correlation function analysis of AGN in the XMM-LSS survey.
November 1 - 3, nd East Asia Numerical Astrophysics Meeting KASI, Korea Shock Waves and Cosmic Rays in the Large Scale Structure of the Universe.
Dependence of the Integrated Faraday Rotations on Total Flux Density in Radio Sources Chen Y.J, Shen Z.-Q.
The Power Spectra and Point Distribution Functions of Density Fields in Isothermal, HD Turbulent Flows Korea Astronomy and Space Science Institute Jongsoo.
Statistical Properties (PS, PDF) of Density Fields in Isothermal Hydrodynamic Turbulent Flows Jongsoo Kim Korea Astronomy and Space Science Institute Collaborators:
High-mass X-ray binaries in the inner part of the Galaxy A.Lutovinov, M.Revnivtsev, M.Gilfanov, S.Molkov, P.Shtykovskiy, R.Sunyaev (IKI, Moscow/MPA, Garching)
Variability and Flares From Accretion onto Sgr A* Eliot Quataert (UC Berkeley) Collaborators: Josh Goldston, Ramesh Narayan, Feng Yuan, Igor Igumenshchev.
Mahdi Khadem Ferdowsi University of Mashhad Supervisors: Dr S. Arbabi (INO) Dr J. Ghanbari (FUM)
A.Z. Gazizov LNGS, Italy Based on works with V. Berezinsky and R. Aloisio UHECR-08.
Searching for the Synchrotron Cosmic Web with the Murchison Widefield Array Bryan Gaensler Centre for All-sky Astrophysics / The University of Sydney Natasha.
SKA-JP Workshop Akahori 1/14 Exploring Faraday Rotation Measure due to the Intergalactic Magnetic Field with the Square Kilometer.
Obtaining turbulence properties from surveys Jungyeon Cho Chungnam National University, Korea Cho & Ryu (2009, ApJL) Cho et al. (2013, in prep.)
The large-scale structure of the Galactic magnetic field & Faraday tomography --desh Raman Research Institute, Bangalore.
Observations of Magnetic Fields in Regular and Irregular Clusters
Eyes on the Polarized Sky, Feet on the Ground
Probing Magnetized Turbulence in the Fermi Bubbles
Correlations and Scale in Circumstellar Dust Shells
With contributions from Shea Brown & Damon Farnsworth, UMN
With contributions from Shea Brown & Damon Farnsworth, UMN
Intrinsic Alignment of Galaxies and Weak Lensing Cluster Surveys Zuhui Fan Dept. of Astronomy, Peking University.
T.G.Arshakian MPI für Radioastronomie (Bonn)
SKADS Polarization Simulations The MPIfR team (Milky Way & star-forming galaxies): Tigran Arshakian, Rainer Beck, Marita Krause, Wolfgang Reich, XiaoHui.
Presentation transcript:

RM due to magnetic fields in the cosmic web and SKA observations Takuya Akahori A KRCF KASI ( ) A JSPS Sydney U. ( ) T. Akahori, References: TA, Ryu (2010), ApJ, 723, 476 TA, Ryu (2011), ApJ, 738, 134 TA, et al. submitted x2 1/16 Collaborators: D. Ryu, J. Kim, B. G. Gaensler, K. Takahashi, K. Kumazaki Special thanks: J. Stil, S. A. Mao, X. Sun, M. Machida

Magnetic Fields in the Cosmic Web (Inter-Galactic Magnetic Field, IGMF) T. Akahori, 3oo Mpc ©4D2U, NAOJ 2/16 IGMF Faraday Rotation

 Residual RM, RRM (observed RM-Galactic RM)  7-15 [rad/m 2 ] RRM deviation tends to be larger for higher redshift extragalactic sources (e.g., Kronberg+ 08; Hammond 11)  RMs through superclusters in nearby universe  9-60 [rad/m 2 ] RM enhancements in Hercules and Perseus-Pisces (but very tentative, see Xu+ 06)  Cluster outskirts observations  <50 [rad/m 2 ] RM deviation at cluster outskirts (e.g., Govoni+ 10) Observational Implications of RM IGMF T. Akahori, Govoni+ (10) RM IGMF ~O(1-10) [rad/m 2 ] in filaments? 3Mpc 4Mpc 5Mpc … RM~O(100) [rad/m 2 ] in GCs  |B|~O(1) µG 3/16

 Estimations from LSS formation simulations  HD and MHD (e.g., Ryu+ 98; Dubois & Teyssier 08; Cho & Ryu 09; Dolag & Stasyszyn 09; Stasyszyn+ 10)  IGMF based on MHD turbulence  1/2 / 1/2 ∼ a few × 100 nG (note: ∼ 10 nG)  Coherent length, L int /L 0 ~1/15 Theoretical Estimations of RM IGMF T. Akahori, Cho+ (09) Cho & Ryu (09) μG |B| 10μG 100 h -1 Mpc RM IGMF ~O(1) [rad/m 2 ] in a filament? Ryu+ (08) 4/16

 Questions:  What’s the nature of RM due to turbulent-amplified IGMF?  Can we discover (and test) them with latest/future observations such as SKA and its pathfinders?  To answer these questions, we calculate RM maps using a model of the IGMF by Ryu+ (08) Calculations of RM IGMF T. Akahori, n e [cm -3 ], B || [μG], l [kpc] 5/16

 2D RM map & 1D RM profile  100 (GCs), ~10 (GGs), ~1 (filaments) [rad/m 2 ]  RM behaves like a random walk with the scale ~ several x 100 [kpc]  RM at the density peak mostly contributes to the accumulated RM Result: Local Universe (1/2) T. Akahori, Log 10 |RM| [rad m -2 ] [Mpc/h] TA, Ryu (2010), ApJ, 723, 476 6/16

 Statistics of RMs for LoSs with Tx = K  Probability Distribution Function (PDF)  Log-normal  Root mean square value  rms ~1.4 [rad/m 2 ]  P RM (k)~P B||,proj (k), L B ~1 Mpc ~L crl /4  in the linear growth stage Result: Local Universe (2/2) T. Akahori, TA, Ryu (2010), ApJ, 723, 476 ↓L crl ↓L B 48 runs average of them best-fit lognormal 7/16

 Simple estimation of RM IGMF  RM~1 [rad/m 2 ] for a filament in a local universe  RM ∝ √N since an accumulation of RM is a random walk process  If N from the path length  N~100 [Mpc] / 10 [Mpc] ~10  1×√10 ~3.2 [rad/m 2 ]  If N from the column density  N~2×10 -3 [Mpc/cm 3 ] / 5×10 -5 [Mpc/cm 3 ] ~40  1×√40 ~6.3 [rad/m 2 ]  IGMF in the WHIM range increases with z by a factor of ~2 (Ryu+ 08) Calculation 2: Cosmological Contribution T. Akahori, path length (dashed) and column density (solid) across the WHIM RM IGMF ~several-10 [rad/m 2 ] through filaments? 8/16

Result: Cosmological Contribution (1/2) T. Akahori, ※ Galaxy Cluster Subtraction CLS:ALL – grids (1 Mpc around Tx > 2 keV) TM7:ALL – grids (T > 10 7 K) TS8:ALL – pixels (Tx* > 10 7 K & Sx*>10 -8 erg/s/cm 2 /sr) TS0:ALL – pixels (Tx* > 10 7 K & Sx*> erg/s/cm 2 /sr)  Integration of RM IGMF  RM behaves like a random walk  rms ~7-10 [rad/m 2 ] through filaments TA, Ryu (2011), ApJ, 738, run average 9/16

 Statistics of RMs for LoSs through filaments  SF 2 is flat at >0.2° with [rad 2 /m 4 ] Result: Cosmological Contribution (2/2) T. Akahori,  South Pole ● : Mao+ (10) WSRT+ACTA ー: Stil+ (11) NVSS(VLA)  North Pole ◯: Mao+ (10) WSRT+ACTA ー: Stil+ (11) NVSS(VLA)  Our Predictions Color : Akahori, Ryu (2011) TA, Ryu (2011), ApJ, 738, run average 10/16

 RM IGMF in filaments would be 1-10 [rad/m 2 ]  RM rms ~1.4 [rad/m 2 ] in the local universe  RM rms ~7-10 [rad/m 2 ] up to z=5  It would have characteristic structures  A peak scale of 1 Mpc for RMs in the local universe  A flat SF at Θ>0.2º for RMs up to z=5  Next questions:  How much is the Galactic Foreground?  How can we find (and test) the RM IGMF ? Summary of the points so far T. Akahori, 11/16

 Toward the poles, turbulent magnetic field is predominant. Its precise modeling is important  Amplitudes of regular and turbulent fields should be related each other, depending on rms Mach number of turbulence and plasma β  Analytic + MHD turbulence model (Akahori+)  SF is <100 [rad 2 /m 4 ] at 10° scale toward the poles  The slope is much steeper that the observed ones at Θ<~1º  Observed RMs would contain significant contributions at small angular scales from local structure, intrinsic RM, and/or the IGMF! Furure (1/3): Galactic Foreground T. Akahori, TA, Ryu, Kim, Gaensler, submitted 12/16

 The Square Kilometer Array  Ultra-wide band & ultra-dense RM grid  “Cosmic Magnetism” is one of the five key science projects Furure (1/3): Dense RM Grid!! T. Akahori, PreviousPathfindersSKA Observational uncertainty [rad m -2 ] Average separation of sources [deg] Θ [degree] S [rad 2 m -4 ] ASKAP 30 deg Θ [degree] SKA 30 deg 2 TA+ in prep. previous 13/16 IGMF + GMF

 Faraday Tomography (RM Synthesis)  What is the best target, and what is the necessary dataset for the IGMF study? Furure (2/3): Faraday Tomography T. Akahori, λ 2 [m 2 ] P[mJy] =Q+iU Polarized intensity IGMF GMF Intrinsic F[mJy] φ [rad/m 2 ] Model Faraday Disp. Func. TA, Kumazaki, Takahashi, Ryu, submitted Reconstructed Faraday Disp. Func φ [rad/m 2 ] Faraday Tomography F[mJy] LOFAR+GMRT+ ASKAP ~ F[mJy] SKA ~ 14/16

 RRM or high-pass filter in Fourier-space  How can we treat unevenly sampled data?  What is the necessary dataset for IGMF studies? Furure (3/3): Image Processing T. Akahori, TA+ in prep. Fourier transformation of RM map Chop the large-scale power in Fourier space Inverse Fourier transformation IGMF + GMFIGMF onlyHigh-pass filtered 15/16

Summary T. Akahori,  RM due to turbulent-driven IGMF in filaments  Local universe RM rms ~1.4 [rad/m 2 ], lognormal 1 Mpc scale  Cosmological contribution RM rms ~7-10 [rad/m 2 ], lognormal º scale & flat SF at Θ>0.2º  Future  Precise modeling of Milky Way  RM Synthesis & Image processing  Tests with SKA & its pathfinders! 16/16