Constraining the astrophysical S-factor of the 3 He(  ) 7 Be reaction Constraining the astrophysical S-factor of the 3 He(  ) 7 Be reaction Mariano.

Slides:



Advertisements
Similar presentations
The 26g Al(p, ) 27 Si Reaction at DRAGON Heather Crawford Simon Fraser University TRIUMF Student Symposium July 27, 2005.
Advertisements

Nuclear Astrophysics Experiments in ATOMKI Gy. Gyürky Institute of Nuclear Research (ATOMKI) Debrecen, Hungary.
Mariano Carmona Gallardo Grupo de Física Nuclear Experimental Instituto de Estructura de la Materia CSIC-Madrid 496. WE-HERAEUS-SEMINAR ON ASTROPHYSICS.
Grupo de Física Nuclear Experimental G F E N CSIC I M E January 2006, Hirschegg, AustriaM.J.G. Borge, IEM CSIC1 Hirschegg’06: Astrophysics and Nuclear.
HIGS2 Workshop June 3-4, 2013 Nuclear Structure Studies at HI  S Henry R. Weller The HI  S Nuclear Physics Program.
NUCLEAR REACTION MODELS FOR SYSTEMATIC ANALYSIS OF FAST NEUTRON INDUCED (n,p) REACTION CROSS SECTIONS M.Odsuren, J.Badamsambuu, G.Khuukhenkhuu Nuclear.
Progress on the 40 Ca(α,  ) 44 Ti reaction using DRAGON Chris Ouellet Supervisor: Alan Chen Experiment leader: Christof Vockenhuber ● Background on the.
197 A u at the End of the Dragon Evan O’Connor University of PEI August 2 nd, 2006.
Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété.
Alpha Stucture of 12 B Studied by Elastic Scattering of 8 Li Excyt Beam on 4 He Thick Target M.G. Pellegriti Laboratori Nazionali del Sud – INFN Dipartimento.
Reaction dynamics of light nuclei around the Coulomb barrier Alessia Di Pietro INFN-Laboratori Nazionali del Sud ARIS 2014Alessia Di Pietro,INFN-LNS.
Direct measurement of 4 He( 12 C, 16 O)  reaction near stellar energy Kunihiro FUJITA K. Sagara, T. Teranishi, T. Goto, R. Iwabuchi, S. Matsuda, K. Nakano,
(p,g) reaction via transfer reaction of mirror nuclei and direct measurement of 11C(p,g)12N at DRAGON Bing Guo For nuclear astrophysics group China Institute.
Low energy radioactive beams Carmen Angulo, CRC Louvain-la-Neuve, Belgium FINUPHY meetingLouvain-la-Neuve, Belgium3-4 May 2004 Recent highlights on nuclear.
Analyzing Powers of the Deuteron-Proton Breakup in a Wide Phase Space Region Elżbieta Stephan Institute of Physics University of Silesia Katowice, Poland.
Astrophysical Reaction Rate for the Neutron-Generator Reaction 13 C(α,n) in Asymptotic Giant Branch Stars Eric Johnson Department of Physics Florida State.
Astrophysical S(E)-factor of the 15 N(p,α) 12 C reaction at sub-Coulomb energies via the Trojan-horse method Daniel Schmidt, Liberty University Cyclotron.
Status of TACTIC: A detector for nuclear astrophysics Alison Laird University of York.
1 B.Ricci* What have we learnt about the Sun from the measurement of 8B neutrino flux? Experimental results SSM predictions SSM uncertainties on  (8B)
Parity Violation in the  decay of polarized 93 Tc 17/2 - isomers B.S. Nara Singh, M. Hass and G. Goldring Weizmann Institute of Science, ISRAEL D. Ackerman,
The R-matrix method and 12 C(  ) 16 O Pierre Descouvemont Université Libre de Bruxelles, Brussels, Belgium 1.Introduction 2.The R-matrix formulation:
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
The b -delayed deuteron-decay of 6 He J. Ponsaers, R. Raabe, F. Aksouh, D. Smirnov, I. Mukha, A. Sanchez, M. Huyse, P. Van Duppen, C. Angulo, O. Ivanov,
11 Primakoff Experiments with EIC A. Gasparian NC A&T State University, Greensboro, NC For the PrimEx Collaboration Outline  Physics motivation:  The.
Study of the  -decay of 12 B Proposal to INTC 25th February 2002 SpokespersonH.O.U. Fynbo ContactpersonU.C. Bergmann.
Recent Progress in Nuclear Astrophysics at TRIUMF Using Indirect Techniques Barry Davids, TRIUMF 5 Mar 2009.
I NSTITUTE FOR S TRUCTURE AND N UCLEAR A STROPHYSICS N UCLEAR S CIENCE L ABORATORY Research:Stellar Burning – nuclear reactions with stable beams Explosive.
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
Text optional: Institutsname Prof. Dr. Hans Mustermann Mitglied der Leibniz-Gemeinschaft Direct measurement of the d( α, γ ) 6 Li cross-section.
Α - capture reactions using the 4π γ-summing technique Α. Lagoyannis Institute of Nuclear Physics, N.C.S.R. “Demokritos”
Study of the 40 Ca(  ) 44 Ti reaction at stellar temperatures with DRAGON Christof Vockenhuber for the DRAGON collaboration Vancouver, B.C., Canada.
Mariano Carmona Gallardo Grupo de Física Nuclear Experimental Instituto de Estructura de la Materia CSIC-Madrid O. Tengblad 1, B.S. Nara Singh 2, M. Hass.
Photonuclear reactions in astrophysics
TRIUMF Canada’s national laboratory for nuclear and particle physics Direct Measurement of the 21 Na(p,γ) 22 Mg Reaction: Resonance Strengths and γ-γ Analysis.
Nuclear CMAM Olof TENGBLAD IEM - CSIC O. Tengblad: CMAM 10 year’s anniversary March
 -capture measurements with the Recoil-Separator ERNA Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum HRIBF Workshop – Nuclear.
Nuclear structure and fundamental interactions Solid state physics Material irradiation Micrometeorite research and study Astrophysics Nuclear astrophysics.
Neutron enrichment of the neck-originated intermediate mass fragments in predictions of the QMD model I. Skwira-Chalot, T. Cap, K. Siwek-Wilczyńska, J.
CAWONAPS - Dec 10th, S(p,  ) 34 Cl Constraining nova observables: Direct measurement of 33 S(p,  ) 34 Cl in inverse kinematics Jennifer Fallis,
ANC Techniques and r-matrix analysis Santa Fe, April 2008 ANC Techniques and r-matrix analysis Grigory Rogachev.
 ( E ) = S(E) e –2   E -1 2      m  m   m   m   Reaction Rate(star)    (E)  (E) dE Gamow Peak  Maxwell Boltzmann.
 ( E ) = S(E) e –2   E -1 2       m  m   m   m   Reaction Rate(star)    (E)  (E) dE Gamow Peak  Maxwell Boltzmann.
Lifetime measurement of the MeV state in 15 O Naomi Galinski SFU, Department of Physics, Burnaby BC TRIUMF, Vancouver BC CAWONAPS, 10 December 2010.
Measurement of 7 Be(n,  ) and 7 Be(n,p) cross sections for the Cosmological Li problem in Addendum to CERN-INTC /INTC-P-417 Spokepersons:
NS08 MSU, June 3rd – 6th 2008 Elisa Rapisarda Università degli studi di Catania E.Rapisarda 18 2.
Neutron cross-sections measurement at the facility at CERN Students’coffee – 26th meeting, Tuesday 28 October 2014, D02-BE Auditorium Prevessin Massimo.
19 March 2009Thomas Mueller - Workshop AAP09 1 Spectral modeling of reactor antineutrino Thomas Mueller – CEA Saclay Irfu/SPhN.
Reaction studies with low-energy weakly-bound beams Alessia Di Pietro INFN-Laboratori Nazionali del Sud NN 2015Alessia Di Pietro,INFN-LNS.
ERNA: Measurement and R-Matrix analysis of 12 C(  ) 16 O Daniel Schürmann University of Notre Dame Workshop on R-Matrix and Nuclear Reactions in Stellar.
THEORETICAL PREDICTIONS OF THERMONUCLEAR RATES P. Descouvemont 1.Reactions in astrophysics 2.Overview of different models 3.The R-matrix method 4.Application.
Direct measurement of the 4 He( 12 C, 16 O)  cross section near stellar energy Kunihiro FUJITA K. Sagara, T. Teranishi, T. Goto, R. Iwabuchi, S. Matsuda,
Shape evolution of highly deformed 75 Kr and projected shell model description Yang Yingchun Shanghai Jiao Tong University Shanghai, August 24, 2009.
Santa Tecla, 2-9 October 2005Marita Mosconi,FZK1 Re/Os cosmochronometer: measurements of relevant Os cross sections Marita Mosconi 1, Alberto Mengoni 2,
Jun Chen Department of Physics and Astronomy, McMaster University, Canada For the McMaster-NSCL and McMaster-CNS collaborations (5.945, 3+ : **) (5.914,
26th September 2014 Guillermo Ribeiro 1 G. Ribeiro, E. Nácher, A. Perea, J. Sánchez del Río, O. Tengblad Instituto de Estructura de la Materia – CSIC,
 -capture measurements with a Recoil-Separator Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum Int. Workshop on Gross Properties.
György Gyürky Institute for Nuclear Research (Atomki)
L. Acosta1, M. A. G. Álvarez2, M. V. Andrés2, C. Angulo3, M. J. G
György Gyürky Institute of Nuclear Research (Atomki) Debrecen, Hungary
The D(4He,)6Li reaction at LUNA and the Big Bang Nucleosynthesis
Novel technique for constraining r-process (n,γ) reaction rates.
Plan 3He(4He, )7Be, Nuclear Astrophysics at Weizmann Institute.
Status of the A=56, 64, and 68 X-ray burst waiting points
BBN, neutrinos and Nuclear Astrophysics
Study of the resonance states in 27P by using
Study of the resonance states in 27P by using
Recoil charge state distributions in 12C(a,g)16O at DRAGON
Neutrino Reaction in Nuclear-Astro Physics
Plan Nuclear Astrophysics at Weizmann Institute.
Elastic alpha scattering experiments
Presentation transcript:

Constraining the astrophysical S-factor of the 3 He(  ) 7 Be reaction Constraining the astrophysical S-factor of the 3 He(  ) 7 Be reaction Mariano Carmona Gallardo Instituto de Estructura de la Materia-CSIC (Madrid) “Advances in Radioactive Isotope Science” Tokio, 2nd June 2014 QUESTIONS TO ADDRESS! 1.- Motivation: Why to study the 3 He(  ) 7 Be reaction 2.- Reaction and Techniques: How to determine the cross section 3.- Our experiments: How we measured the reaction cross section 4.- Conclusions: What are our results and what is the impact

MOTIVATION: The 3 He(  ) 7 Be in the Sun M. Carmona-Gallardo - ARIS 2014 Constraining the S-factor of the 3 He(  ) 7 Be reaction 2 MotivationReaction and Techniques Activation ExperimentDirect Counting Experiment Conclusion The evolution and processes are studied by the Standard Solar Model Input parameters: Opacities Equation of Stage …. Nuclear Reactions Cross Sections High uncertainty in the neutrino flux from 8 B decay  ( 8 B) ≈ S 34 (0) 0.81 Astrophysical S-factor Nuclear Part of the Cross Section Easier extrapolations. Coulomb Contirubtion

MotivationReaction and Techniques Activation ExperimentDirect Counting Experiment Conclusion MOTIVATION: Previous Data M. Carmona-Gallardo - ARIS 2014 Constraining the S-factor of the 3 He(  ) 7 Be reaction 3 High discrepancy among data sets Specially high in the medium high energy region: E CM =1-3 MeV Theoretical differences in the energy dependence of the S 34 factor and thus on ≈ S 34 (0) Values at 1-3 MeV constrains the underlying physics and the extrapolations down to zero energy Mariano Carmona-Gallardo PhD. Thesis MotivationReaction and Techniques Activation ExperimentDirect Counting Experiment Conclusion

MotivationReaction and Techniques Activation ExperimentDirect Counting Experiment Conclusion Reaction and Techniques M. Carmona-Gallardo - ARIS 2014 Constraining the S-factor of the 3 He(  ) 7 Be reaction 4 7 Be 7 Li 4 He 3 He Proton Neutron 7 Be RADIATIVE CAPTURE REACTION ELECTROMAGNETIC TRANSITION DIRECT ONE STEP PROCESS DIRECT COUNTING DETECTION METHOD PROMPT  -DETECTION METHOD ACTIVATION METHOD:  -DELAYED DETECTION T 1/2 =53.24(4) days B.R.=10.44% MotivationReaction and Techniques Activation ExperimentDirect Counting Experiment Conclusion

MotivationReaction and Techniques Activation ExperimentDirect Counting Experiment Conclusion ACTIVATION METHOD EXPERIMENT M. Carmona-Gallardo - ARIS 2014 Constraining the S-factor of the 3 He(  ) 7 Be reaction 5 Silicon detector Collimator Pressure gauge 4 He Gas Cu catcherNi foil -200 V suppressor 3 He beam Scattered beam Insulator M. Carmona-Gallardo et al. Phys. Rev C 86, (R) 2012 MotivationReaction and Techniques Activation ExperimentDirect Counting Experiment Conclusion

MotivationReaction and Techniques Activation ExperimentDirect Counting Experiment Conclusion Direct Recoil Counting Experiment 6 DRAGON RECOIL SEPARATOR AT TRIUMF 3 He gas and 4 He beam TWO EFFECTS TO BE CONSIDERED: TRANSMISSION: loss of 7 Be  12 C( 3 He,  14 N)p TDP  GEANT SIMULATIONS CHARGE STATE DISTRIBUTION  9 Be beam onto 3 He gas 7 Be 3+ 7 Be 2+ M. Carmona-Gallardo - ARIS 2014 Constraining the S-factor of the 3 He(  ) 7 Be reaction Mariano Carmona-Gallardo PhD. Thesis MotivationReaction and Techniques Activation ExperimentDirect Counting Experiment Conclusion

MotivationReaction and Techniques Activation ExperimentDirect Counting Experiment Conclusion CONCLUSIONS M. Carmona-Gallardo - ARIS 2014 Constraining the S-factor of the 3 He(  ) 7 Be reaction 7 Discard the Parker Data Energy dependence of the S-factor have been investigated by using χ 2 method The low energy data of LUNA constrain also the energy dependence Two theoretical models fit both our data and low energy data. R-matrix fit by Kontos et al. and ab-initio calculation by Neff. Ab-initio calculation reproduce the data without any normalization factor Therefore we suggest a S 34 (0)=0.593 keV·b as given by Neff. Direct implications in astrophysics: 5.05 % increase in    Be  4.75 % increase in    B  Mariano Carmona-Gallardo PhD. Thesis MotivationReaction and Techniques Activation ExperimentDirect Counting Experiment Conclusion

MotivationReaction and Techniques Activation ExperimentDirect Counting Experiment Conclusion Direct Recoil Counting Experiment M. Carmona-Gallardo - ARIS 2014 Constraining the S-factor of the 3 He(  ) 7 Be reaction 8 Prompt-  detected in the BGO array A. Rojas, M.Carmona-Gallardo et al. under preparation MotivationReaction and Techniques Activation ExperimentDirect Counting Experiment Conclusion

MotivationReaction and Techniques Activation ExperimentDirect Counting Experiment Conclusion THANK YOU! M. Carmona-Gallardo - ARIS 2014 Constraining the S-factor of the 3 He(  ) 7 Be reaction 9 S34 CMAM-Madrid  CSIC-Madrid: M. Carmona-Gallardo, O. Tengblad, M.J.G. Borge, J.A. Briz, M. Cubero, E. Nácher, A. Perea, V. Pesudo, G.Ribeiro, J. Sánchez del Rio  University of York: B.S. Nara Singh, B.R. Fulton, J. McGrawth  The Weizmann Institute: M. Hass, V. Kumar  Soreq Research Center: G. Haquin, Y. Nier-El, R. Yaniv, Z. Yungreis  Aarhus University: H. Fynbo  CMAM-Madrid: A. Munoz-Martín, A. Maira, N. Gordillo S34 TRIUMF  CSIC-Madrid: M.Carmona-Gallardo, O.Tengblad, M.J.G Borge  TRIUMF: A. Rojas, S.K.L Sjue, B. Davids, C. Ruiz, J. Fallis, A. Shotter, D. Ottowell, D.A. Hutcheon, G. Ruprecht, L. Buchmann, U. Hager  University of York: B.S. Nara Singh, B. R. Fulton, A.M. Laird, S. Fox  The Weizmann Institute: M. Hass  Simon Fraser University: S. Reeve, D. Howell, N. Galinski  NSCL: R. H. Cyburt Bibliography MotivationReaction and Techniques Activation ExperimentDirect Counting Experiment Conclusion [PK63] P.D. Parker and R.W. Kavanagh, Phys. Rew.131 nº (1963) [NDA69] K. Nagatani et al., Nucl. Phys. A 128, 325 (1969) [KBB82] H. Kräwinkel et al., Zeit. Fur Phys. A 304, 307 (1982) [RDB83] R.G.H. Robertson et al. Phys. Rev. C 27 nº 1, 11(1983) [ABLG84] T. K. Alexander et al. Nucl. Phys. A 427, 526 (1984) [OBK84] J. L. Osborne et al. Nucl. Phys. A 115 (1984) [HBR88] M. Hilgemeier et al., Zeit. Fur Phys. A 304, 307 (1982) [NHNEH04] B.S. Nara Singh et al. Phys. Rev. Lett. 93, (2004) [BBS07] T. Brown et al. Phys. Rew C 76, (2007) [GCC07] Gy. Gyürky et al. Phys. Rew. C 75, (2007) [DGK09] A. Di Leva et al. Phys. Rev Lett. 102, (2009) [KTA87] T. Kajino et al. The Astroph. Journal 319, 531 (1987) [Nol01] Kenneth Nollet, Phys. Rev. C 63 nº 5, 1 (2001) [Desc04] P. Descouvemont et al. Atom.Data Nucl. Data 88 nº 1, 203 (2004) [Neff01] T. Neff Phys. Rev. Lett. 106, n’ 4, (2011)

MotivationReaction and Techniques Activation ExperimentDirect Counting Experiment Conclusion Direct Recoil Counting Experiment M. Carmona-Gallardo - ARIS 2014 Constraining the S-factor of the 3 He(  ) 7 Be reaction 10 7 Be recoils counted in the DSSSD Low statistical errors

MotivationReaction and Techniques Activation ExperimentDirect Counting Experiment Conclusion M. Carmona-Gallardo - ARIS 2014 Constraining the S-factor of the 3 He(  ) 7 Be reaction 11 ACTIVATION METHOD EXPERIMENT M.Carmona-Gallardo et al. PRC (R )

MotivationReaction and Techniques Activation ExperimentDirect Counting Experiment Conclusion MOTIVATION: The 3 He(  ) 7 Be in the 7 Li problem M. Carmona-Gallardo - ARIS 2014 Constraining the S-factor of the 3 He(  ) 7 Be reaction 12 The Standard Big Bang Nucleosynthesis predicts the primordial abundances A factor ≈3 between the SBBN predications and the direct observations Different solutions have been suggested including physics beyond the standard model. SBBN input parameters Baryon density/Neutrino Lifetime/flavors Nuclear Reactions Cross Sections 7 Li ≈ S