Chemistry of Spherical Superheavy Elements – The Road to Success.

Slides:



Advertisements
Similar presentations
Department für Physik Michael Sewtz Quantum Heavies From Hot Fusion to Ultracold Ions M. Block 1, M. Drewsen 2, S. Fritzsche 1, D. Habs 3, Y.T. Oganessian.
Advertisements

SYNTHESIS OF SUPER HEAVY ELEMENTS
Wir schaffen Wissen – heute für morgen 5. April 2015PSI,5. April 2015PSI, Paul Scherrer Institut Diamond Detectors for Transactinide Chemistry Patrick.
Viola and the Heavy Elements W. Loveland Oregon State University.
The fission of a heavy fissile nucleus ( A, Z ) is the splitting of this nucleus into 2 fragments, called primary fragments A’ 1 and A’ 2. They are excited.
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
Wir schaffen Wissen – heute für morgen 5. Mai 2015PSI,5. Mai 2015PSI, Paul Scherrer Institut Polonium Evaporation Studies from Liquid Metal Spallation.
The peculiarities of the production and decay of superheavy nuclei M.G.Itkis Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia.
1Managed by UT-Battelle for the U.S. Department of Energy Low-Energy Review, 30 August 2011 Search for 283,284,285 Fl decay chains Krzysztof P. Rykaczewski.
Fragmentation of very neutron-rich projectiles around 132 Sn GSI experiment S294 Universidad de Santiago de Compostela, Spain Centre d’Etudes Nucleaires.
Application of heavy charged particle spectrometry 1) Identification of superheavy elements by means of alpha decay sequence 2) Study of hot and dense.
J.H. Hamilton 1, S. Hofmann 2, and Y.T. Oganessian 3 1 Vanderbilt University, 2 GSI 3 Joint Institute for Nuclear Research ISCHIA 2014.
Multinucleon Transfer Reactions – a New Way to Exotic Nuclei? Sophie Heinz GSI Helmholtzzentrum and Justus-Liebig Universität Gießen Trento, May ,
At the End of the Nuclear Map Yuri Oganessian Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna, Moscow region,
S. Sidorchuk (JINR, Dubna) Dubna Radioacive Ion Beams DRIBsIII: STATUS and PROSPECTS S. Sidorchuk (JINR, Dubna) 9-16 May 2013, Varna, Bulgaria 1.
Superheavy Element Studies Sub-task members: Paul GreenleesJyväskylä Rodi Herzberg, Peter Butler, RDPLiverpool Christophe TheisenCEA Saclay Fritz HessbergerGSI.
GSI Experiments on Synthesis and Nuclear Structure Investigations of Heaviest Nuclei F. P. Heßberger Gesellschaft für Schwerionenforschung mbH, D
Status of the experiments on the synthesis of Element 117
Spectroscopy of exotic nuclei Lecture 4
Ю.Ц.Оганесян Лаборатория ядерных реакций им. Г.Н. Флерова Объединенный институт ядерных исследований Пределы масс и острова стабильности сверхтяжелых ядер.
Nuclear Reactions Nuclear Reactions involve the nucleus of atoms When a nuclear reaction occurs, the element is changed completely into another element.
Heavy Element Research at Dubna (current status and future trends) Yuri Oganessian Flerov Laboratory of Nuclear Reactions Joint Institute for Nuclear Research.
Trends in heavy ion sciences 24 May, Why experimenters like to come to Dubna: Scientific success is always a good reason to organize a big party!
CERN, August HAPPY LANDING ON THE ISLAND OF SUPERHEAVY ELEMENTS Heinz W. Gäggeler Paul Scherrer Institut and Bern University, Switzerland Laboratory.
Opportunities for synthesis of new superheavy nuclei (What really can be done within the next few years) State of the art Outline of the model (4 slides.
Synthesis of superheavy elements at FLNR S. DMITRIEV Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna, , Russia.
Mendeleev; Dubna 2009 Mendeleev’s principle against Einsteins relativity news from the chemistry of superheavy elements H.W. Gäggeler  Reminiscences:
Kazimierz 2011 T. Cap, M. Kowal, K. Siwek-Wilczyńska, A. Sobiczewski, J. Wilczyński Predictions of the FBD model for the synthesis cross sections of Z.
Decay Series. Uranium Radioactive Decay U Mass number Atomic number Th-230  Th-234 
Cryogenic ion catchers using superfluid helium and noble gases Sivaji Purushothaman KVI, University of Groningen The Netherlands.
Nuclear Medicine 4103 Section I Basic Chemistry. Structure of The Atom Nucleus: contains Protons (+) and Neutrons (0) Electron (-) orbiting the nucleus.
Beyond Darmstadt(ium) - Status and Perspectives of Superheavy Element Research recent results from SHIP (GSI) synthesis and identification of SHE nuclear.
106 th Session of the JINR Scientific Council September 24-25, 2009, Dubna Perspectives of JINR – ORNL Collaboration in the Studies of Superheavy Elements.
28. November 2005 Fission product yield measurements with JYFLTRAP A novel application of a Penning trap H. Penttilä, J. Äystö, V.-V. Elomaa, T. Eronen,
Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna Experimental activities and main results of the researches at FLNR (JINR) Theme: Synthesis.
© 2003 By Default! A Free sample background from Slide 1 JINR SCIENTIFIC COUNCIL 104 th Session, 25 September 2008, Dubna.
Fundamental Interactions Physics & Instrumentation Conclusions Conveners: P. Mueller, J. Clark G. Savard, N. Scielzo.
Yuri Oganessian Flerov Laboratory of Nuclear Reactions Joint Institute for Nuclear Research SHE in JINR 109 th Session of the JINR Scientific Council Feb.17-18,
JRJC /11/09 Barbara Sulignano JRJC 2009 CEA SACLAY Key questions How do protons and neutrons make stable nuclei and rare isotopes? How many neutrons.
Superheavy Element Research at Berkeley Ken Gregorich Lawrence Berkeley National Laboratory Festcolloquium and Workshop on the Future of Superheavy Elements.
Synthesis of the heaviest elements at RIKEN Kosuke Morita Superheavy Element Laboratory RIKEN Nishina Center 2009/1/201Periodic Table of D.I. Mendeleev.
Preparation of gas-chemistry of Dubnium at IMP Z. Qin, J.S. Guo, X.L. Wu, H.J.Ding, W.X.Huang, Z.G. Gan, Institute of Modern Physics, Chinese Academy of.
Atoms: The Building Blocks of Matter Unit 2.  Introduction to the Atom Modern Atomic Theory Subatomic Particles Isotopes Ions Essential Standards and.
GAN Zaiguo Institute of Modern Physics, Chinese Academy of Sciences Alpha decay of the neutron-deficient uranium isotopes.
W. Nazarewicz. Limit of stability for heavy nuclei Meitner & Frisch (1939): Nucleus is like liquid drop For Z>100: repulsive Coulomb force stronger than.
Review of synthesis of super heavy elements: reactions, decays and characterization. Experimental Setup of MASHA. Results of first experiments. study.
1 Programme Advisory Committee for Nuclear Physics 29 th meeting, January 2009 Programme Advisory Committee for Nuclear Physics 29 th meeting,
1 Synthesis of superheavy elements with Z = in hot fusion reactions Wang Nan College of Physics, SZU Collaborators: S G Zhou, J Q Li, E G Zhao,
CHEMICAL IDENTIFICATION of the element Db as decay product of the element 115 in the 48 Ca Am reaction CHEMICAL IDENTIFICATION of the element Db.
Workshop on The Future of Superheavy Element Research February , 2004 Gesellschaft f ü r Schwerionenforschung Darmstadt, Germany.
Sub-task 4: Spallation and fragmentation reactions M. Valentina Ricciardi (GSI) in place of José Benlliure (USC) Sub-task leader: Universidad de Santiago.
Programme Advisory Committee for Nuclear Physics 33th meeting, January 2011 FLNR Radiochemical Research. Present Status and 7-year Plan S. Dmitriev.
C. M. Folden III Cyclotron Institute, Texas A&M University NN2012, San Antonio, Texas May 31, 2012.
Observation of new neutron-deficient multinucleon transfer reactions
Closing remarks Key qestions: Location of SHE shell and SHE nuclear structure Atomic properties and relativistic effects Breakdown of Mendelejev systematic.
Welcome to the CHARMS See – Tea Saturday, March 05, 2016 Comparison of ISOLDE yields with calculated in- target production rates Strahinja Lukić,
Heavy ion nuclear physics in JINR /present and future/ Yuri Oganessian FLNR JINR 28-th of Nucl. Phys. PAC meeting June 19-20, 2008, JINR, Dubna.
March, 2006SERC Course1  Z>92 (Heaviest Element in Nature) and upto Z= achieved by n irradiation or p,  and d bombardment in Cyclotron ( )
Decay scheme studies using radiochemical methods R. Tripathi, P. K. Pujari Radiochemistry Division A. K. Mohanty Nuclear Physics Division Bhabha Atomic.
Alexander Yakushev GSI Helmholtzzentrum für Schwerionenforschung GmbH Gas phase chemistry of the SHE Results Instrumentations Perspectives FUSHE Workshop.
Michael Dworschak, GSI for the SHIPTRAP collaboration
Lesson 14 The Transuranium Elements. The Basics 117 known elements, 1-118, no 117 All elements beyond 92 man-made.
Study of Heavy-ion Induced Fission for Heavy Element Synthesis
Jeong-Jeung Dang, Kyoung-Jae Chung, Y. S. Hwang *
HEAVY ELEMENT RESEARCH AT THE FLNR (DUBNA)
KS4 Chemistry The Periodic Table.
Experiment SHIP: Fusion without “extrapush“
Edexcel Topic 1: Key concepts in chemistry
New Transuranium Isotopes in Multinucleon Transfer Reactions
Catalin Borcea IFIN-HH INPC 2019, Glasgow, United Kingdom
Presentation transcript:

Chemistry of Spherical Superheavy Elements – The Road to Success

sea of instability island of spherical SHE Number of neutrons Number of protons peak of Sn peak of Ca peak of Pb peak of Th,U strait of radioactivity S. Soverna January 2004

287   5 s sf  3 min Hs 277 sf  10  min 285   10 min   1 min Ds 289   20 s   45 s 112   2.6 s sf  7.6 s Ds 292   53 ms 116 Rf 253 sf 48  s Rf 254 sf 23  s Rf 256 sf,  6.2  s Rf 257 ,ec 4.7s ,ec Rf 258 sf 13 ms Rf 259 ,sf 3.1 s Rf 260 sf 21 ms Rf 261  78 s Rf 262 sf 47ms 1.4s Rf 255 ,sf 0.8s ,sf 1.4s2.1s sf Db 257 ,sf 1.3 s Db 258 ,ec 4.4 s Db 260 ,ec/sf? 1.5 s Db 261 ,sf 1.8 s Db 262 ,ec/sf? 34 s Db 263 ,sf 27 s Sg 265 ,sf? 7.4 s Sg 266 ,sf? 21 s 1.4s Sg 263  0.3s ,sf? 0.9s Sg 261 ,ec 0.23 s Sg 260 ,sf 3.6 ms Sg 259  0.48 s Sg 258 sf 2.9 ms Bh 261  11.8 ms Bh 264  440 ms Bh 262  102ms  8ms Db 256 ,sf 2.6 s Db 255 ,sf 1.6 s Bh 260  ? Hs 263  ? Hs 264 ,sf 0.45 ms Hs 265  0.8ms  1.7ms  Hs ms Hs 269   9.3 s Mt 266  1.7 ms Mt 268  70 ms Ds 267   3  s Ds 271  1.1ms  56 ms Ds 273  291  s 269  170  s Ds 272  1.6 ms  194  s  277  s Rf Ruther- fordium Db Dubnium Sg Seaborgium Bh Bohrium Hs Hassium Mt Meitnerium Ds N 166 Z Bh 266   1s Bh 267   17 s Hs ms  Sg 262 sf 6.9 ms Ds 270  0.1ms  6 ms Db 259,ec/sf? 0.5 s  Hs 270   3.6 s   87 ms   32 ms   0.48 s   100 ms   3.6 s   170 ms   0.72 s Mt 275   9.7 ms Mt 272   9.8 s Bh 271  Bh 268   16 h Db 267   73 m Db 290   30 ms   0.4 s  sf  2 ms Evidence for long-lived isotopes from 48 Ca induced fusion reactions on actinide targets (FLNR, published and unpublished data)  -Decay Spontaneous fission EC-Decay Darmstadtium, sf  7.9 s

- Half-lives of primary evaporation residues and their progenies: ms to h (Chemistry needs ≥ s) - Decay properties: mostly  -decay chains ending in a SF-nuclide (Problem: No link to known nuclides) - Maximum production cross sections  1 to 5 pb (3n and 4n channels). For 1 mg/cm 2 targets and 0.5 p  A beam approx. 0.6 to 3 atoms/day produced (Problem: UNILAC duty cycle, cw beam would enable approx. factor of 3 higher intensity at equal peak current)

The missing link: 287   5 s sf  3 min Hs 277 sf  10  min 285   10 min   1 min Ds 289   20 s   45 s 112   2.6 s sf  7.6 s Ds 292   53 ms 116 Rf 253 sf 48  s Rf 254 sf 23  s Rf 256 sf,  6.2  s Rf 257 ,ec 4.7s ,ec Rf 258 sf 13 ms Rf 259 ,sf 3.1 s Rf 260 sf 21 ms Rf 261  78 s Rf 262 sf 47ms 1.4s Rf 255 ,sf 0.8s ,sf 1.4s2.1s sf Db 257 ,sf 1.3 s Db 258 ,ec 4.4 s Db 260 ,ec/sf? 1.5 s Db 261 ,sf 1.8 s Db 262 ,ec/sf? 34 s Db 263 ,sf 27 s Sg 265 ,sf? 7.4 s Sg 266 ,sf? 21 s 1.4s Sg 263  0.3s ,sf? 0.9s Sg 261 ,ec 0.23 s Sg 260 ,sf 3.6 ms Sg 259  0.48 s Sg 258 sf 2.9 ms Bh 261  11.8 ms Bh 264  440 ms Bh 262  102ms  8ms Db 256 ,sf 2.6 s Db 255 ,sf 1.6 s Bh 260  ? Hs 263  ? Hs 264 ,sf 0.45 ms Hs 265  0.8ms  1.7ms  Hs ms Hs 269   9.3 s Mt 266  1.7 ms Mt 268  70 ms Ds 267   3  s Ds 271  1.1ms  56 ms Ds 273  291  s 269  170  s Ds 272  1.6 ms  194  s  277  s Rf Ruther- fordium Db Dubnium Sg Seaborgium Bh Bohrium Hs Hassium Mt Meitnerium Ds N 166 Z Bh 266   1s Bh 267   17 s Hs ms  Sg 262 sf 6.9 ms Ds 270  0.1ms  6 ms Db 259,ec/sf? 0.5 s  Hs 270   3.6 s   87 ms   32 ms   0.48 s   100 ms   3.6 s   170 ms   0.72 s Mt 275   9.7 ms Mt 272   9.8 s Bh 271  Bh 268   16 h Db 267   73 m Db 290   30 ms   0.4 s  sf  2 ms  -Decay Spontaneous fission EC-Decay Darmstadtium, sf  7.9 s Hs chemistry, a tool to bridge the gap A. Türler et al.

- Half-lives of primary evaporation residues and their progenies: ms to h (Chemistry needs ≥ s) - Decay properties: mostly  -decay chains ending in a SF-nuclide (Problem: No link to known nuclides) - Maximum production cross sections  1 to 5 pb (3n and 4n channels). For 1 mg/cm 2 targets and 0.5 p  A beam approx. 0.6 to 3 atoms/day produced (Problem: UNILAC duty cycle, cw beam would enable approx. factor of 3 higher intensity at equal peak current)

S. Soverna January 2004

Standard enthalpies of gaseous mono- atomic elements Atomic number  H ° 298 [kcal/mol] B. Eichler, 1976 Conclusion: Elements 112 to 117 should be volatile noble metal-like elements Problem: Influence of relativistic effects?

Relativistic Extrapolations K.S. Pitzer, J. Chem. Phys. 63, 1032 (1975) V. Pershina et al., Chem. Phys. Lett., 365, 176 (2002) B. Eichler, Kernenergie 10, 307 (1976 ) B. Eichler, PSI Report 03-01, Villigen (2000) Noble gas like Volatile metal

How to experimentally determine a metallic character at a single atom level? → Determine interaction energy (adsorption enthalpy) with (noble*) metals, i.e. measure retention temperature * Easier to keep clean surface during experiment

isothermal chromatography Temperature [°C] Column length [cm] Temperature [°C] Yield [%] 50% T t Ret. = T 1/2 Gas flow highlow thermochromatography Temperature [°C] Column length [cm] Temperature [°C] Yield [%] T a high Gas flow low

R. Eichler et al.

Current interest: element 112 → Behaves E112 similar to Hg ? → Production: 238 U( 48 Ca;3n) (SF;T 1/2  3 min) → 2 chemistry experiments performed with evicence for: At FLNR: Isothermal chromatography on Au: E112 does not adsorb at room temp.  H a < 60 kJ/mol (A. Yakushev et al.) At GSI: Thermochromatography: E112 does not deposit on Au down to -90 °C  H a < 48 kJ/mol (S. Soverna et al.)

238 U( 48 Ca,3n)  20 s sf m  20 s EVR 286  20 s sf m  20 s EVR 286  20 s sf m  20 s EVR 286  20 s sf m  20 s EVR 286 VASSILISSA E* 33 MeV E* 35 MeV Oganessian et al., 1999 & in press

Current interest: element 112 → Behaves E112 similar to Hg ? → Production: 238 U( 48 Ca;3n) (SF;T 1/2  3 min) → 2 chemistry experiments performed with evicence for: At FLNR: Isothermal chromatography on Au: E112 does not adsorb at room temp.  H a < 60 kJ/mol (A. Yakushev et al.) At GSI: Thermochromatography: E112 does not deposit on Au down to -90 °C  H a < 48 kJ/mol (S. Soverna et al.)

Ar +CH 4 mixture 48 Ca He inlet He outlet He Gas outlet Chemical isolation of Element 112 Target: U 3 O 8 - 2mg/cm 2 + Nd 2 O  g/cm 2 Beam: 48 Ca (262 MeV) 0.6 p  A Dose: 2.8x10 18 ; 8 SF detected in ion.chamber in coincidence with 1 to 3 neutrons

Current interest: element 112 → Behaves E112 similar to Hg ? → Production: 238 U( 48 Ca;3n) (SF;T 1/2  3 min) → 2 chemistry experiments performed with evicence for: At FLNR: Isothermal chromatography on Au: E112 does not adsorb at room temp.  H a < 60 kJ/mol (A. Yakushev et al.) At GSI: Thermochromatography: E112 does not deposit on Au down to -90 °C  H a < 48 kJ/mol (S. Soverna et al.)

oven (1000 °C) Ta-/Ti-getter quartz wool filter oven (850 °C) ~10 m PFA-capillary 48 Ca-Beam recoil chamber rotating 238 U-target (1.6 mg cm -2 ) PIN-dioden oppositer thermostat surface N 2 (liq.) (-196 °C) (+35 °C) a S. Soverna January 2004

Experiment GSI February-March U( 48 Ca, 3n) (SF, 3min)

Both experiments not conclusive, because → Detection of SF activity not specific to assign it to a given (isotope of an) element. → Fission fragment energies too low (FLNR: ion. chamber; GSI: PIN- diodes)

Current effort: focus on  - decaying nuclides

V. Utyonkov, priv. comm. Feb Ca DGFRS/FLNR

Device 2004 Ar/He carrier gas loop (v=10 l) Ar - refill 48 Ca beam Recoil chamber (volume approx.10 cc Buffer Getter oven Pressure gauge / MFC 4-  COLD, 1 side gold All metal Rn Trap Mass flow controller

Requirements for future SHE chemistry experiments (e.g. Z=114) - Fast (separation time approx. 1 s) - Separation of transfer products prior to chemistry set-up: ChemSep - Chemistry behind a ChemSep - Beam dose of ≥ required for approx. 1 month experiments: 1 p  A average beam intensity! cw-LINAC; Novel target technology (stable compounds, liquid metal targets)

DGFRS 1 x Ds 179 sf 0.31 s  20 s EVR 290  20 s s  9.5  20 s s  Pu( 48 Ca,5n) E* 52 MeV 242 Pu( 48 Ca,3n)  20 s EVR 290 Ds s  9.7  20 s s  9.5  20 s Hs ms  9.3  20 s sf Sg m  20 s s  10 Ds 179 sf 0.2 s  20 s EVR 290  20 s s  9.5  20 s s  x1 x E* 40 MeV E* MeV 245 Cm( 48 Ca,2n)  20 s s  20 s EVR 293  9.5  20 s ms   20 s s  10 Ds 179 sf 0.2 s 2 x E* 35 MeV

Reqiurements for future SHE chemistry experiments - Fast (separation time approx. 1 s) - Separation of transfer products prior to chemistry set-up: ChemSep - Chemistry behind a ChemSep - Beam dose of ≥ required for approx. 1 month experiments: 1 p  A average beam intensity! cw-LINAC; Novel target technology (stable compounds, liquid metal targets)

220 Rn 48 Ca Cm H.W. Gäggeler et al., Phys. Rev. C33, 1983 (1986) Transfer reaction products!

Requirements for future SHE chemistry experiments - Fast (separation time approx. 1 s) - Separation of transfer products prior to chemistry set-up: ChemSep - Chemistry behind a ChemSep - Beam dose of ≥ required for approx. 1 month experiments: 1 p  A average beam intensity! cw-LINAC; - Novel target technology (stable compounds, liquid metal targets)

A recoil/gas chemistry chamber at the Berkeley Gas-filled Separator (BGS)

Hot-catcher coupled to vacuum thermochromatography set-up Induction heating Hot Catcher R. Eichler, Qin Zhi 

R.Eichler, Qin Zhi

Requirements for future SHE chemistry experiments - Fast (separation time approx. 1 s) - Separation of transfer products prior to chemistry set-up: ChemSep - Chemistry behind a ChemSep - Novel target technology (stable compounds, liquid metal targets) - Beam dose of ≥ required for approx. 1 month experiments: 1 p  A average beam intensity! cw-LINAC;

Suggested application: liquid U/Mn (80/20) at 700 °C

Requirements for future SHE chemistry experiments - Fast (separation time approx. 1 s) - Separation of transfer products prior to chemistry set-up: ChemSep - Chemistry behind a ChemSep - Novel target technology (stable compounds, liquid metal targets) - Beam dose of ≥ required for approx. 1 month experiments: 1 p  A average beam intensity! (cw-LINAC)