DL – IFU (Prieto/Taylor) Slicer: –25mas sampling … 0.9mm slices ~f/250 (assuming no anamorphism) Detector = 2k array of 18um pixels –Slit subtends 1-pixel.

Slides:



Advertisements
Similar presentations
HIRES Technical concept and design E. Oliva, HIRES meeting, Brera (Milan, Italy)1.
Advertisements

GLAO instrument specifications and sensitivities
1 ATST Imager and Slit Viewer Optics Ming Liang. 2 Optical layout of the telescope, relay optics, beam reducer and imager. Optical Layouts.
M3 Instrument Design and Expected Performance Robert O. Green 12 May 2005.
Thomas Stalcup June 15, 2006 Laser Guidestar System Status.
SXC meeting SRON, July 19-20, SXC meeting 19-20/07/2007 Alignment Positioning of mirror with respect to detector (internal). Positioning of total.
Impact of Cost Savings Ideas on NGAO Instrumentation December 19, 2008 Sean Adkins.
NGAO Instrumentation Overview September 2008 Updated Sean Adkins.
Optical Diagnostics Hg_jet_meeting, Thomas Tsang tight environment high radiation area non-serviceable area passive components optics only, no.
AURA New Initiatives Office S.C. Barden, M. Liang, K.H. Hinkle, C.F.W. Harmer, R.R. Joyce (NOAO/NIO) September 17, 2001 Instrumentation Concepts for the.
1 IRMS Preliminary results - overview Optimize Field lenses in collimator and camera to for 1.39m field curvature on NFIRAOS Get good imaging performance.
Direction-detection spectrometer concepts the CCAT Matt Bradford + others 24 October 2006, in progress.
LGS WFS Design Status & Issues Dekany, Delacroix, & Velur Caltech Optical Observatories.
Object selection ideas for NGAO NGAO Meeting #6 Anna Moore April 26, 2007.
IRMS Optical Subsystem Review. The Charter Confirm that the MOSFIRE design is a feasible baseline for IRMS (yes) Verify that the MOSFIRE design can achieve.
WFS Preliminary design phase report I V. Velur, J. Bell, A. Moore, C. Neyman Design Meeting (Team meeting #10) Sept 17 th, 2007.
NGAO Instrumentation Cost Drivers and Cost Savings September 2008 Sean Adkins.
Wide-field, triple spectrograph with R=5000 for a fast 22 m telescope Roger Angel, Steward Observatory 1 st draft, December 4, 2002 Summary This wide-field,
SWIFT Team University of Oxford 12 th November 2007O-SWIFT Progress Report Fraser Clarke.
1 NGAO Science Instrument Reuse Part 1: NIRC2 NGAO IWG December 12, 2006.
Optical Diagnostics Thomas Tsang tight environment high radiation area non-serviceable area passive components optics only, no active electronics back.
Spectrographs. Spectral Resolution d 1 2 Consider two monochromatic beams They will just be resolved when they have a wavelength separation of d Resolving.
KMOS Instrument Science Team Review Instrument overview.
Masahiro Konishi (IoA, UTokyo), SWIMS Team S W I M S.
5 Components Common to All Optical Spectrometers Source Transparent Sample Holder Wavelength Selector Radiation Detector Signal Processor and Readout.
MCAO Adaptive Optics Module Subsystem Optical Designs R.A.Buchroeder.
B.Delabre November 2003ANGRA DOS REIS - BRAZIL ESO 2 nd GENERATION INSTRUMENTATION – OPTICAL DESIGNS ESO VLT SECOND GENERATION INSTRUMENTATION Optical.
Spectrographs. Literature: Astronomical Optics, Daniel Schneider Astronomical Observations, Gordon Walker Stellar Photospheres, David Gray.
A visible-light AO system for the 4.2 m SOAR telescope A. Tokovinin, B. Gregory, H. E. Schwarz, V. Terebizh, S. Thomas.
The Mid-Infrared Instrument (MIRI) Medium Resolution Spectrometer for JWST Martyn Wells MIRI EC & UKATC.
STATUS REPORT OF FPC SPICA Task Force Meeting March 29, 2010 MATSUMOTO, Toshio (SNU)
1 FRIDA Engineering Status 17/05/07 Engineering Status May 17, 2007 F.J. Fuentes InFraRed Imager and Dissector for Adaptive Optics.
PACS IIDR 01/02 Mar 2001 FPFPU Alignment1 D. Kampf KAYSER-THREDE.
Chang,Liang YNAO,CAS July 09-10,2011 Fore Parts of Optical Design Scheme of FASOT (from telescope to spectrograph)
Current Status of SPICA Focal Plane Instruments October 19, 2009 Hideo Matsuhara (ISAS/JAXA) & FPI team.
Integral Field Spectrograph Eric PRIETO CNRS,INSU,France,Project Manager 11 November 2003.
PACS IBDR 27/28 Feb 2002 Optical System Design1 N. Geis MPE.
Spectrographs. Literature: Astronomical Optics, Daniel Schroeder Astronomical Observations, Gordon Walker Stellar Photospheres, David Gray.
Brazilian Tunable Filter Imager (BTFI) Preliminary Design Review (PDR)‏ USP-IAG Universidade de São Paulo 18-19th June 2008 BTFI Optics (Keith Taylor)
Lyot Stop Focal Plane Mask OAP3 Out of plane spherical mirror.
An IFU for IFOSC on IUCAA 2m Telescope
NORDFORSK Summer School, La Palma, June-July 2006 NOT: Telescope and Instrumentation Michal I. Andersen & Heidi Korhonen Astrophysikalisches Institut Potsdam.
MIRI Optical System CDR, 6 th & 7 th December 2006 Mid InfraRed Instrument 07-1 Optical System Critical Design Review (CDR) TIPS Presentation: Margaret.
WFIRST IFU -- Preliminary “existence proof” Qian Gong & Dave Content GSFC optics branch, Code 551.
イメージスライサー型可視光 面分光ユニットの開発 Development of an integral field unit (IFU) with an image slicer Shinobu Ozaki, Satoshi Miyazaki, Takuya Yamashita, Takashi Hattori,
Optical & Radiometric Conceptual Design of EMAS Thermal Port Upgrade Kickoff Meeting June 29, 2010 Roy W. Esplin.
Test Readiness Review 23 October 2003 CRAL - LYON.
Dirk Soltau Kiepenheuer-Institut für Sonnenphysik Synoptic Network Workshop, Boulder Some General Considerations on Wide Field Telescopes.
Binospec - Next Generation Optical Spectrograph for the MMT
Solar orbiter_______________________________________________.
E-ELT-HIRES possible design and capabilities E. Oliva (INAF-Firenze) B. Delabre (ESO) E. Oliva B. Delabre, ELT-HIRES, Cambridge1 o A very brief.
NIRSpec IFU Eric Prieto Final Presentation Definition Phase May, 11th – ESTEC.
Preliminary Foreoptics Design for FASOT of 2nd Generation L. Chang, X.M Cheng
Science with Giant Telescopes - Jun 15-18, Instrument Concepts InstrumentFunction range (microns) ResolutionFOV GMACSOptical Multi-Object Spectrometer.
Overview, Spectrometer Products and Processing Philosophy Phil Appleton on Behalf of PACS Team PACS IFU Spectrometer.
Wide field telescope using spherical mirrors Jim Burge and Roger Angel University of Arizona Tucson, AZ Jim
Incoming instruments. New instruments IMACS MOEMultiobject echellette LDSS upgradeMultiobject optical spectroscopy CorMASSLow-res visiting NIR spectrograph.
Optical Diagnostics Thomas Tsang tight environment high radiation area non-serviceable area passive components optics only, no active electronics transmit.
GMT’s Near IR Multiple Object Spectrograph - NIRMOS Daniel Fabricant Center for Astrophysics.
06 Oct 05Space Science & Technology Dept1 Solar Orbiter Consortium Meeting 03 Mar 06 Optical Design Of Solar Orbiter Normal Incidence Spectrometer KF Middleton.
PACS IIDR 01/02 Mar 2001 Optical System Design1 N. Geis MPE.
F. Pepe Observatoire de Genève Optical astronomical spectroscopy at the VLT (Part 2)
NIRSpec - the JWST Multi-Object Spectrograph P. Ferruit (ESA), S. Arribas (CSIS), S. Birkmann (ESA), T. Böker (ESA), A. Bunker (Oxford), S. Charlot (IAP),
Astronomical Spectroscopic Techniques. Contents 1.Optics (1): Stops, Pupils, Field Optics and Cameras 2.Basic Electromagnetics –Math –Maxwell's equations.
Date of download: 6/8/2016 Copyright © 2016 SPIE. All rights reserved. The portions of the datacube collected during a single detector integration period.
Integral Field Spectrograph Eric Prieto LAM. How to do 3D spectroscopy.
Astronomical Spectroscopic Techniques
SNAP spectrograph demonstrator : Test Plan
An IFU slicer spectrometer for SNAP
ESS Freia Scope Setting ESS - Lund - 17/10/2016.
Presentation transcript:

DL – IFU (Prieto/Taylor) Slicer: –25mas sampling … 0.9mm slices ~f/250 (assuming no anamorphism) Detector = 2k array of 18um pixels –Slit subtends 1-pixel (spectral dithering as for TiPi) Camera f-ratio = f/5 (double TMA a la JWST system) Full window requires ~800 pixels –4 slits per spectrograph/detector –Slit height = ~1000 pixels or 30-by-30 slicer with FoV ~ arcsec. –4 slits gives FoV ~1.5 2 arcsec. Is this a sufficient field ? Or do we need 2 or 4 units ? –NB: SRD asks for ~4 2 arcsec –If only we could use a 4 2 k, 9  m pixel, array at f/2.5 ! Assume fore-optics can switch in factor of 5 magnification to give: –25mas ; 20mas; 15mas; 10mas; 5mas –5mas option would feed spectrograph at f/12.5 –What beam-size would be required ? 50mm OK ?

Optical Components Cool box: –45 deg. fold to vertical –Pupil imager onto ~25mm DM Field lens or Field mirror ? (not exactly at focus) –DM as steering mirror feeding mirror at field stop (as in TiPi) but also an imaging system (as in TiPi) to give ~10 arcsec D-L field DM can switch from IFU to direct imaging field by small tip/tilt –Object can be viewed directly and then selected into IFU field –Surrounding objects can be imaged directly while doing IFU spectroscopy

Optical Components Cryo box: –Magnification optics and scale changer optics Non-anamorphic (25mas ; 12.5mas ; 5mas) Cold stop (rotating ?) –2 contiguous 60-slice slicer units square FoV 2 slits into 1 spectrograph –Double TMA spectrograph (a la JWST/NIRSPEC) Collimator somewhere between f/10 and f/20 (tbd) Camera f/5 Beam size ~50mm (plus pupil diffraction)

Scope of Work Optical concept at same level as TiPi –Field lens/mirror –DM – steering & image/IFU selector –Imaging system (FoV ~10” D-L) –Fore-optics / scale changer –Slicer unit –Spectrograph Approx. wave-front error budget ? Challenges: –Larger FoV ~3 arcsec 2 ? –Faster cameras ~f/2.5 ?