SEQUENCES A sequence is a function whose domain in the set of positive integers. So if I gave you a function but limited the domain to the set of positive.

Slides:



Advertisements
Similar presentations
Equations in Quadratic Form
Advertisements

< < < > > >         . There are two kinds of notation for graphs of inequalities: open circle or filled in circle notation and interval notation.
Operations on Functions
Solving Quadratic Equations.
Parallel and Perpendicular Lines. Gradient-Intercept Form Useful for graphing since m is the gradient and b is the y- intercept Point-Gradient Form Use.
LINES. gradient The gradient or gradient of a line is a number that tells us how “steep” the line is and which direction it goes. If you move along the.
If a > 0 the parabola opens up and the larger the a value the “narrower” the graph and the smaller the a value the “wider” the graph. If a < 0 the parabola.
PAR TIAL FRAC TION + DECOMPOSITION. Let’s add the two fractions below. We need a common denominator: In this section we are going to learn how to take.
Let's find the distance between two points. So the distance from (-6,4) to (1,4) is 7. If the.
REAL NUMBERS. {1, 2, 3, 4,... } If you were asked to count, the numbers you’d say are called counting numbers. These numbers can be expressed using set.
A n g l e s a n d T h e i r M e a s u r e. An angle is formed by joining the endpoints of two half-lines called rays. The side you measure from is called.
SETS A = {1, 3, 2, 5} n(A) = | A | = 4 Sets use “curly” brackets The number of elements in Set A is 4 Sets are denoted by Capital letters 3 is an element.
DOUBLE-ANGLE AND HALF-ANGLE FORMULAS
(r,  ). You are familiar with plotting with a rectangular coordinate system. We are going to look at a new coordinate system called the polar coordinate.
SPECIAL USING TRIANGLES Computing the Values of Trig Functions of Acute Angles.
SOLVING LINEAR EQUATIONS. If we have a linear equation we can “manipulate” it to get it in this form. We just need to make sure that whatever we do preserves.
TRIGONOMETRIC IDENTITIES
You walk directly east from your house one block. How far from your house are you? 1 block You walk directly west from your house one block. How far from.
Logarithmic Functions. y = log a x if and only if x = a y The logarithmic function to the base a, where a > 0 and a  1 is defined: exponential form logarithmic.
INVERSE FUNCTIONS.
The definition of the product of two vectors is: 1 This is called the dot product. Notice the answer is just a number NOT a vector.
Dividing Polynomials.
exponential functions
GEOMETRIC SEQUENCES These are sequences where the ratio of successive terms of a sequence is always the same number. This number is called the common ratio.
VECTORS. A vector is a quantity that has both magnitude and direction. It is represented by an arrow. The length of the vector represents the magnitude.
The standard form of the equation of a circle with its center at the origin is Notice that both the x and y terms are squared. Linear equations don’t.
A binomial is a polynomial with two terms such as x + a. Often we need to raise a binomial to a power. In this section we'll explore a way to do just.
ARITHMETIC SEQUENCES These are sequences where the difference between successive terms of a sequence is always the same number. This number is called the.
Properties of Logarithms
Logarithmic and Exponential Equations. Steps for Solving a Logarithmic Equation If the log is in more than one term, use log properties to condense Re-write.
A polynomial function is a function of the form: All of these coefficients are real numbers n must be a positive integer Remember integers are … –2, -1,
VECTORS.
Library of Functions You should be familiar with the shapes of these basic functions. We'll learn them in this section.
11.3 Powers of Complex Numbers, DeMoivre's Theorem Objective To use De Moivre’s theorem to find powers of complex numbers.
COMPLEX Z R O S. Complex zeros or roots of a polynomial could result from one of two types of factors: Type 1 Type 2 Notice that with either type, the.
Sum and Difference Formulas. Often you will have the cosine of the sum or difference of two angles. We are going to use formulas for this to express in.
Solving Quadratics and Exact Values. Solving Quadratic Equations by Factoring Let's solve the equation First you need to get it in what we call "quadratic.
Surd or Radical Equations. To solve an equation with a surd First isolate the surd This means to get any terms not under the square root on the other.
COMPOSITION OF FUNCTIONS “SUBSTITUTING ONE FUNCTION INTO ANOTHER”
VECTORS. A vector is a quantity that has both magnitude and direction. It is represented by an arrow. The length of the vector represents the magnitude.
SEQUENCES A sequence is a function whose domain in the set of positive integers. So if you have a function but limited the domain to the set of positive.
Warm Up! Complete the square Quadratic Functions and Models.
Remainder and Factor Theorems. REMAINDER THEOREM Let f be a polynomial function. If f (x) is divided by x – c, then the remainder is f (c). Let’s look.
Dividing Polynomials Using Synthetic Division. List all coefficients (numbers in front of x's) and the constant along the top. If a term is missing, put.
INTRODUCING PROBABILITY. This is denoted with an S and is a set whose elements are all the possibilities that can occur A probability model has two components:
The sum f + g This just says that to find the sum of two functions, add them together. You should simplify by finding like terms. Combine like terms &
Let's just run through the basics. x axis y axis origin Quadrant I where both x and y are positive Quadrant II where x is negative and y is positive Quadrant.
We’ve already graphed equations. We can graph functions in the same way. The thing to remember is that on the graph the f(x) or function value is the.
The sum f + g This just says that to find the sum of two functions, add them together. You should simplify by finding like terms. Combine like terms &
(r,  ). You are familiar with plotting with a rectangular coordinate system. We are going to look at a new coordinate system called the polar coordinate.
TRIGONOMETRIC IDENTITIES
10-7 (r, ).
SIMPLE AND COMPOUND INTEREST
Systems of Inequalities.
RATIONAL FUNCTIONS II GRAPHING RATIONAL FUNCTIONS.
THE DOT PRODUCT.
(r, ).
Absolute Value.
VECTORS.
Graphing Techniques: Transformations Transformations Transformations
INVERSE FUNCTIONS.
Operations on Functions
SIMPLE AND COMPOUND INTEREST
Graphing Techniques: Transformations Transformations: Review
Symmetric about the y axis
The Binomial Theorem.
exponential functions
Operations on Functions
Symmetric about the y axis
Graphing Techniques: Transformations Transformations: Review
Presentation transcript:

SEQUENCES A sequence is a function whose domain in the set of positive integers. So if I gave you a function but limited the domain to the set of positive integers and you substituted them in beginning with 1 then 2 then 3 etc. you would generate a sequence. This is a sequence generated by putting 1, 2, 3, 4, 5 … in the function above.

We can look at the sequence and see a pattern: +3 For a sequence we usually use a little different notation than for functions. We use the letter a for a term in the sequence and subscript it with the term number. The term number is also the number that you substitute in the formula for a sequence to get that term’s value. This would be how we’d express the sequence above. If I wanted to know the 10th term I’d put 10 in the sequence formula (often called the term generator)

Write the first five terms of the sequence. 2,5,10,17,26, Can you see the pattern and guess the next term? 37,

Can you figure out the formula for this sequence? We can see that each term is twice as big as the next except that the terms alternate signs. Alternating signs in a sequence mean there must be a negative sign to a power because odd powers would be negative and even powers would be positive. Let’s make a guess on what it might look like and then modify our guess until we have it right. Let’s sub in 1 then 2 then 3 and see what we get. Looks good but we lost the first term. Let’s modify our guess.

Another way to define a sequence is using what we call a recursive formula. Basically it is the rule of what you do to a term to get the term after it. +3 We saw the pattern in the first sequence: So to get to the next term we add three. The recursive formula would look like this: to get the nth termtake the n-1 term (the term right before it) and add 3

Let’s write the recursive formula for the other sequence we had: To get to the next term you multiply by negative two. With this formula, to get to the next term you must substitute the term before it. While this formula basically shows you the pattern, you can’t easily get at the 10th term without knowing the 9th term. You’d need the 9th term here to find the 10th term

= 1 Let’s try generating a sequence from a recursive formula: tells us the first term take the term number Use this formula to find the second term. would be when n = 2 1 Find the next 3 terms. 1, 1, 2, 2, 3, … subtract the term before

Acknowledgement I wish to thank Shawna Haider from Salt Lake Community College, Utah USA for her hard work in creating this PowerPoint. Shawna has kindly given permission for this resource to be downloaded from and for it to be modified to suit the Western Australian Mathematics Curriculum. Stephen Corcoran Head of Mathematics St Stephen’s School – Carramar