Dynamic Kinetic Resolution: Practical Applications in Synthesis Valerie Keller November 1, 2001.

Slides:



Advertisements
Similar presentations
Asymmetric Synthesis Introduction.
Advertisements

Development of catalysts for asymmetric hydrogenation Katherine Jolley, Rina Soni, Guy Clarkson and Martin Wills Department of Chemistry, The University.
Stereochemical relay through oligoureas - Is it possible to control the orientation of the helix with a chiral group A? - Is it possible to control a stereoselective.
Elimination Reactions of Alkyl Halides
Lewis Basic Chiral Phosphine Organocatalysis John Feltenberger Hsung Group University of Wisconsin – Madison January 29, 2009.
Noyori Catalytic Asymmetric Hydrogenation Wang jiahao
Reaction Stereochemistry A regioselective reaction: preferential formation of one constitutional isomer A stereoselective reaction: preferential formation.
Homogeneous Hydrogen Transfer Chemistry Professor Steve Marsden.
General Principles Definition of a Catalyst Energetics of Catalysis Reaction Coordinate Diagrams of Catalytic Reactions.
ASYMMETRIC EPOXIDATION OF OLEFINS BY SHI’S CATALYST AND
1 D. A. Evans’ Asymmetric Synthesis — From 80’s Chiral Auxiliary to 90’s Copper Complexes and Their Applications in Total Synthesis Supervisor: Professor.
Center for Catalysis Research and Innovation
Catalytic Cross-coupling Reactions with Unactivated Alkyl Electrophiles and Alkyl Nucleophiles Heng Su 04/11/2008 Department of Chemistry Brandeis University.
Asymmetric Suzuki–Miyaura Coupling in Water with a Chiral Palladium Catalyst Supported on an Amphiphilic Resin Yasuhiro Uozumi Angew. Chem. Int. Ed. 2009,
Organic chemistry for medicine and biology students Chem 2311 Chapter 5 Stereochemistry By Prof. Dr. Adel M. Awadallah Islamic University of Gaza.
1 CH402 Asymmetric catalytic reactions Prof M. Wills Think about chiral centres. How would you make these products? Think about how you would make them.
Recent Development for Stereoselective Synthesis of 1,3-Polyol Ye Zhu Prof. Burgess’ Group Aug. 19, 2010.
Year 3 CH3E4 notes: Asymmetric Catalysis, Prof Martin Wills
Alkylation by Asymmetric Phase- Transfer Catalysis 张文全.
Lecture 1c Asymmetric Synthesis.
Lecture 14 APPLICATIONS IN ORGANIC SYNTHESIS Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
The application of alkaline metal(Ca, Sr, Ba) complex as catalyst in organic chemistry 张文全 1.
Organic Chemistry Reviews Chapter 11 Cindy Boulton February 8, 2009.
Cooperativity in Asymmetric Bimetallic Catalysis 05/20/2015 Presented By Michael C. Young.
SEPARATION BY ENZYMATICALLY CATALYZED REACTIONS Chapter 10.
1 Rh-Catalyzed Asymmetric Additions: The Rise of Chiral Dienes Daniela Sustac February 16, 2010 Tamio HayashiErick Carreira.
Introduction Asymmetric reduction of C=N bonds represents a powerful method for the asymmetric formation of chiral amines. 1 Whilst many methods exist.
Dr. Wolf's CHM 201 & Molecules with Multiple Chirality Centers.
7.13 Chemical Reactions That Produce Diastereomers
Epoxidation of Alkenes
1 Single electron transfer reaction involving 1,3-dicarbonyl compounds and its synthetic applications Reporter: Jie Yu Oct. 31, 2009.
Iron Catalysed Oxidation Reactions. Moftah Darwish and Martin Wills * * Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK. Conclusion:
N-Heterocyclic carbenes : A powerful tool in organic synthesis Thomas B UYCK PhD Student in Prof. Zhu Group, LSPN, EPFL Frontiers in Chemical Synthesis.
Wangqing Kong Zhu’s group meeting 13 th, Aug, 2015 Intramolecular Asymmetric Heck Reaction and Application in Natural Products Synthesis.
Synthesis of Optically Active  Amino Alcohols Changyou Yuan Department of Chemistry Michigan State University -A survey of major developments after the.
Carbon-Carbon Bond Forming Reactions I. Substitution Reaction II. Addition Reaction.
Hydroformylation and oxidation of olefins Textbook H: Chapter 16.6, 17.1 – 17.3 Textbook A: Chapter 16.1 – 16.2, 18.1 – 18.2.
Catalytic Enantioselective Allylic Amination of Unactivated Terminal Olefins Via an Ene Reaction / [2,3]-Rearrangement Hongli Bao & Uttam K. Tambar Guillaume.
1 Year 3 CH3E4 notes: Asymmetric Catalysis, Prof Martin Wills Reorganised to highlight key areas to learn and understand. You are aware of the importance.
Catalytic Asymmetric Total Syntheses of Quinine and Quinidine Izzat T. Raheem, Steven N. Goodman, and Eric N. Jacobsen J. Am. Chem. Soc. 2004, 126, 3,
LSPN Jean-Baptiste Gualtierotti Micro-topic: Desymmetrization (Part 1?) Last Group Metting of the Year.
IMPROVED RUTHENIUM CATALYSTS FOR Z-SELECTIVE OLEFIN METATHESIS Benjamin K. Keitz, Koji Endo, Paresma R. Patel, Myles B. Herbert, and Robert H. Grubbs J.
Ye Zhu 09/02/10 Burgess’s Group Meeting Chiral Ligands On A Spiro Scaffold for Transition-Metal- Catalyzed Asymmetric Reactions Work by Prof. Zhou Qi-Lin.
Utilization of Ring Closing Metathesis in Alkaloid Synthesis I. Synthetic Studies on the Immunosuppressant FR II. Toward the Total Synthesis of Lundurines.
Organic Pedagogical Electronic Network Attachment of Molecular Catalysts on Solid Supports - Rh Complex on a Silica Support Jones Group, Georgia Tech Davies.
Vanadium-Catalyzed Selenide Oxidation with in situ [2,3] Sigmatropic Rearrangement: Scope and Asymmetric Applications Campbell Bourland February 6, 2002.
Supervisor: Yong Huang Reporter: Qian Wang Date: Magical Chiral Spirobiindane Skeletons.
Atom-Economical and Sustainable C-N Bond Formation Reactions from Alcohols and N-Sources via Catalytic Hydrogen Transfer Reactions September 15th, 2015.
Reactions Involve Sulfur Ylides 陈殿峰 陈殿峰
Redox Neutral Reactions Wang Chao Redox Economy and Redox Neutral Reactions: Angew. Chem. Int. Ed. 2009, 48, 2854 – 2867.
金属催化的氧化反应 CYP 450TauD Acc. Chem. Res. 2007, 40, 522–531.
Organic Pedagogical Electronic Network An Introduction to Catalytic Nitrene C–H Oxidation Ashley M. Adams, Justin Su, And J. Du Bois.
Chapter 7-2. Reactions of Alkyl Halides: Nucleophilic Substitutions Based on McMurry’s Organic Chemistry, 6 th edition.
Reporter: Yang Chao Supervisor: Prof. Yong Huang The Transformation of α ‑ Diazocarbonyl Compounds.
Catalytic Synthesis of α,β- Unsaturated Carbonyl Derivatives 陈殿峰
Enantioselective Reactions Catalyzed by Iron Complexes Pablo Pérez.
Structure-Activity Relationships in Enantioselective Oxidations of Alcohols by Pd II Complexes Smith (Robert J.) Nielsen Jason M. Keith, William A. Goddard.
(Advisor : Prof. Eric N. Jacobsen)
Major developments in Rh-catalyzed asymmetric 1,4-addition of boron species to enone Group Seminar By Raphaël Beltran.
Chapter 5 Stereochemistry Adel M. Awadallah Islamic University of Gaza
Chapter 5 Stereochemistry Adel M. Awadallah Islamic University of Gaza
Recent Development in Isocyanide-Based
Asymmetric Synthesis Introduction.
Enantioselective Rh-catalyzed Aldehyde C-H Activation
Baeyer-Villiger Oxidation: Mechanism and Enantioselective Systems
Photoswitchable Thioureas for the External Manipulation of Catalytic Activity Laura Osorio-Planes , Carles Rodríguez-Escrich , and Miquel A. Pericàs *
CH 5-3: A new Stereoisomer - Diastereomers
Reaction Summary: SN2, E2, SN1/E1
Chapter 5 Stereochemistry Adel M. Awadallah Islamic University of Gaza
Chapter 5 Stereochemistry Adel M. Awadallah Islamic University of Gaza
Presentation transcript:

Dynamic Kinetic Resolution: Practical Applications in Synthesis Valerie Keller November 1, 2001

Outline Types of resolution reactions –Kinetic Resolution (KR) –Dynamic Kinetic Resolution (DKR) –Dynamic Thermodynamic Resolution Types of DKR Case study of KR vs. DKR

Kinetic Resolution Assume R is fast reacting enantiomer Kagan, H. B.; Fiaud, J. C. Top. Stereochem. 1988, 18,

Kinetic Resolution ee of SM increases as time increases, ee of product decreases as time increases Only when k R >>k S does the yield approach 50% and ee approach 100% In practice, one cannot maximize both high yield and high ee Kagan, H. B.; Fiaud, J. C. Top. Stereochem. 1988, 18, Keith, J. M.; Larrow, J. F.; Jacobsen, E. N. Adv. Synth. Catal. 2001, 343, %ee remaining starting material % conversion ∞

Kinetic Resolution by Sharpless Asymmetric Epoxidation Martin, V. S.; Woodard, S. S.; Katsuki, T.; Yamada, Y.; Ideda, M.; Sharpless, K. B. J. Am. Chem. Soc. 1981, 103, = k R /k S = % conversion >96% ee ln[(1-C)(1-ee)] ln[1-C)(1+ee)] %ee unreacted alcohol  60% conv.

Dynamic Kinetic Resolution Assume R is fast reacting enantiomer Rates are pseudo 1 st order S and R racemize at the same rate Reaction is irreversible Products do not racemize under reaction conditions Noyori, R.; Tokunaga, M.; Kitamura, M. Bull. Chem. Soc. Jpn. 1995, 68, Kitamura, M.; Tokunaga, M.; Noyori, R. J. Am. Chem. Soc. 1993, 115,

Dynamic Kinetic Resolution Kitamura, M.; Tokunaga, M.; Noyori, R. J. Am. Chem. Soc. 1993, 115, SEL 100 k inv /k R kR/kSkR/kS

Dynamic Kinetic Resolution Kitamura, M.; Tokunaga, M.; Noyori, R. J. Am. Chem. Soc. 1993, 115, SEL 100 k inv /k R kR/kSkR/kS SEL 100

Dynamic Kinetic Resolution Kitamura, M.; Tokunaga, M.; Noyori, R. J. Am. Chem. Soc. 1993, 115, kR/kSkR/kS k inv /k R SEL 100

k inv and k R k R /k S = 6.14 (relative rate) If k inv >>k R, the S/R ratio remains steady If k inv < k R, R is consumed faster than it is replaced Kitamura, M.; Tokunaga, M.; Noyori, R. J. Am. Chem. Soc. 1993, 115, % conversion %ee of product k inv /k R

Hoffmann Test Hirsch, R.; Hoffmann, R. W. Chem. Ber. 1992, 125,

First Published Example of Chemical DKR Noyori, R.; Ideda, T.; Ohkuma, T.; Widhalm, M.; Kitamura, M.; Takaya, H.; Sayo, N. Saito, T.; Taketomi, T.; Kumobayashi, H. J. Am. Chem. Soc. 1989, 111, R 1, R 3 = Me, R 2 = CH 2 NHCOMe, (R)-BINAP-Ru major product is syn SR 98% de and ee

Labeling Experiment Noyori, R.; Ideda, T.; Ohkuma, T.; Widhalm, M.; Kitamura, M.; Takaya, H.; Sayo, N. Saito, T.; Taketomi, T.; Kumobayashi, H. J. Am. Chem. Soc. 1989, 111,

Solvent Effects Hydrogenation in CH 2 Cl 2 is much slower than in MeOH In MeOH, k inv /k R = 0.04 In CH 2 Cl 2, k inv /k R = 0.44 Kitamura, M.; Tokunaga, M.; Noyori, R. J. Am. Chem. Soc. 1993, 115, SEL 100 % conversion CH 2 Cl 2 MeOH

Stereochemical Rationale Noyori, R.; Tokunaga, M.; Kitamura, M. Bull. Chem. Soc. Jpn. 1995, 68, enantiomer preference diastereomer preference

Dynamic Thermodynamic Resolution First equilibrate to thermodynamically favored enantiomer Second rely on kinetic differences to enhance selectivity Rates of equilibration are not equal k R >>k S >>k SR, k RS Beak, P.; Anderson, D. R; Curtis, M. D.; Laumer, J. M.; Pippel, D. J.; Weisenburger, G. A. Acc. Chem. Res. 2000, 33,

Dynamic Thermodynamic Resolution  Li*sparteine complex stable at -78 o C, but equilibrates at -25 o C Basu, A.; Gallagher, D. J.; Beak, P. J. Org. Chem. 1996, 61,

Summary of Resolution Reactions Kinetic Resolution Dynamic Kinetic Resolution Dynamic Thermodynamic Resolution no equilibration equilibration rate fast compared to reaction equilibration rate slow compared to reaction

Outline Types of resolution reactions Types of DKR –Enzymatic DKR –Substrate controlled DKR –Reagent controlled DKR –Catalyst controlled DKR Case study of KR vs. DKR

Enzymatic DKR Huerta, F. F.; Bäckvall, J.-E. Org. Lett. 2001, 3, Fülling, G.; Sih, C. J. J. Am. Chem. Soc. 1987, 109,

Nunami Chiral Auxiliary Substrate Controlled DKR O’Meara, J. A.; Jung, M.; Durst, T. Tetrahedron Lett. 1995, 36, O’Meara, J. A.; Jung, M.; Durst, T. Tetrahedron Lett. 1995, 36, 5096 Chiral auxiliary must be removed Starting material takes several steps to synthesize

Reagent Controlled DKR DAGOH = diacetone- D -glucose Stereochemistry controlled by base used Khiar, N.; Alcudia, F.; Espartero, J.-L.; Rodríguez, L.; Fernández, I. J. Am. Chem. Soc. 2000, 122,

Effect of Base on Stereochemistry Fernández, I.; Khiar, N.; Llera, J. M.; Alcudia, F. J. Org. Chem. 1992, 57, Khiar, N.; Alcudia, F.; Espartero, J.-L.; Rodríguez, L.; Fernández, I. J. Am. Chem. Soc. 2000, 122,

Reagent Controlled DKR Tunge, J. A.; Gately, D. A.; Norton, J. R. J. Am. Chem. Soc. 1999, 121,

Kinetic Studies Tunge, J. A.; Gately, D. A.; Norton, J. R. J. Am. Chem. Soc. 1999, 121,

Catalyst Controlled DKR Hayashi, T.; Konishi, M.; Fukushima, M.; Kanehira, K.; Hioki, T.; Kumada, M. J. Org. Chem. 1983, 48,

Catalytic Cycle Hayashi, T.; Konishi, M.; Fukushima, M.; Kanehira, K.; Hioki, T.; Kumada, M. J. Org. Chem. 1983, 48,

Catalyst Control of DKR Schaus, S. E.; Jacobsen, E. N. Tetrahedron Lett. 1996, 37,

Salen Catalytic Cycle Schaus, S. E.; Jacobsen, E. N. Tetrahedron Lett. 1996, 37,

DKR in Small Library Synthesis Peukert, S.; Jacobsen, E. N. Org. Lett. 1999, 1,

KR vs. DKR Dynamic Kinetic Resolution Kinetic Resolution

Mastigophorene B: Kinetic Resolution Bringmann, G.; Hinrichs, J.; Pabst, T.; Henschel, P,; Peters, K.; Peters, E.-M. Synthesis 2001,

Mastigophorene B: Dynamic Kinetic Resolution Bringmann, G.; Pabst, T.; Henschel, P.; Kraus, J.; Peters, K.; Peters, E.-M.; Rycroft, D. S.; Connolly, J. D. J. Am. Chem. Soc. 2000, 122,

Kinetic vs. Dynamic Kinetic Resolution Bringmann, G.; Pabst, T.; Henschel, P.; Kraus, J.; Peters, K.; Peters, E.-M.; Rycroft, D. S.; Connolly, J. D. J. Am. Chem. Soc. 2000, 122, Bringmann, G.; Hinrichs, J.; Pabst, T.; Henschel, P.; Peters, K.; Peters, E.-M. Synthesis 2001, Kinetic resolution Dynamic Kinetic resolution

Conclusions In situ racemization of dynamic kinetic resolution can compensate for limitations of kinetic resolution Ratios of k inv, k R, and k S important for ee of products Wide variety of reactions possible

Thank you Lei JiangJohn Herbert Bill LambertJen Slaughter John CampbellWhitney Erwin Eric VoightMargaret Biddle Greg HansonJason Adasiewicz Melissa FeenstraBelshaw Group Joe MartinelliTolga Gulmen Susie MartinsLisa Jungbauer Jason Pontrello