PULSAR SURVEYS (AO & GBT) Why? How deep can we go? (D max, V max ) Example surveys Hardware Funding.

Slides:



Advertisements
Similar presentations
Ben Barsdell Matthew Bailes Christopher Fluke David Barnes.
Advertisements

Inspiraling Compact Objects: Detection Expectations
7/26/12W. Majid1 Crab Giant Pulses W. Majid *, S. Ellingson (PI), C. Garcia-Miro, T. Kuiper, J. Lazio, S. Lowe, C. Naudet, D. Thompson, K. Wagstaff * Jet.
1 Hough transform Some Fourier basics: –Nyquist frequency: 1/2 , with  the difference between time samples. If signal is bandwidth limited below Nyquist.
Zhen Yan, Zhi-Qiang Shen, Xin-Ji Wu On behalf of the Shanghai 65m Radio Telescope Team.
Pulsars with LWA1 Paul S. Ray and Sean Cutchin Naval Research Laboratory 2012 July 26 Basic research in radio astronomy at NRL is supported by NRL/ONR.
HI from z ~ 0 – 1 with FAST D.J. Pisano West Virginia University NRAO.
SKAMP - the Molonglo SKA Demonstrator M.J. Kesteven CSIRO ATNF, T. J. Adams, D. Campbell-Wilson, A.J. Green E.M. Sadler University of Sydney, J.D. Bunton,
Swift/BAT Hard X-ray Survey Preliminary results in Markwardt et al ' energy coded color.
GLAST LAT Project Astrostatistics Workshop, HEAD meeting, 10 September 2004 James Chiang (GSSC/UMBC) 1 Gamma-ray Large Area Space Telescope Challenges.
Radio Telescopes Large metal dish acts as a mirror for radio waves. Radio receiver at prime focus. Surface accuracy not so important, so easy to make.
The Transient Radio Sky to be Revealed by the SKA Jim Cordes Cornell University AAS Meeting Washington, DC 8 January 2002.
SETI: Search Strategies & Current Plans Jim Cordes 23 September 2002 Motivation for searching we’re here life expected to be common (especially microbial.
A New Model for the Galactic Electron Density & its Fluctuations J. M. Cordes, Cornell University BU Milky Way Workshop 17 June.
Transient Science with the Allen Telescope Array Geoff Bower Berkeley.
PULSARS & TRANSIENT SOURCES Pushing the Envelope with SKA Jim Cordes, Cornell 10 July 2001  Neutron Star Science & Pulsar Surveys  Transient sources.
The Future of the Past Harvard University Astronomy 218 Concluding Lecture, May 4, 2000.
The Dynamic Radio Sky and Future Instruments Jim Cordes Cornell University AAS Meeting Nashville 28 May 2003.
Discovery (?) for new population of isolated neutron star “ Transient radio bursts from rotating neutron star ” M.A. McLaughlin et al., Nat. Feb. 16, 2006.
A New Pulsar Distance Scale and its Implications J. M. Cordes, Cornell University COSPAR 11 October 2002 New electron density.
Pulsar population overview Dunc Lorimer (WVU) November 2, 2006 The observed sample Spin frequencies > 10 Hz - normal pulsars - recycled objects Current/future.
A bright millisecond radio burst of Extragalactic origin Duncan Lorimer, Matthew Bailes, Maura McLaughlin, David Narkevic and Froney Crawford Science (in.
The Strongly Relativistic Double Pulsar and LISA Vicky Kalogera Physics & Astronomy Dept with Chunglee Kim (NU) Duncan Lorimer (Manchester)
Panorama of the Universe: Daily all-sky surveys with the SKA John D. Bunton, CSIRO TIP, Ronald D. Ekers, CSIRO ATNF and Elaine M. Sadler, University of.
Radio Diagnostics of Turbulence in the Interstellar & Intergalactic media J. M. Cordes, Cornell University URSI 20 August 2002.
July 2001SKA Technologies at Molonglo1 Prototype SKA technologies at Molonglo – 1. Overview & Science Goals Joint project between the University of Sydney,
High-Energy & Radio Pulsar Population Modeling (++) Maura McLaughlin & Jim Cordes Jodrell Bank Observatory Cornell University December 11, 2001.
Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array Digital Signal Processing.
FAST Low Frequency Pulsar Survey Youling Yue ( 岳友岭 ) FAST Project, NAOC PKU Astrophysics Colloquium 2012.
PULSARS & TRANSIENT SOURCES Pushing the Envelope with SKA Jim Cordes, Cornell 28 Feb 2000  Frontiers of Neutron Star Science  Complete census of transient.
LBA Calibrator Survey Chris Phillips eVLBI Project Scientist 23 July 2009.
FPGA-based Dedispersion for Fast Transient Search John Dickey 23 Nov 2005 Orange, NSW.
ATLASGAL ATLASGAL APEX Telescope Large Area Survey of the Galaxy F. Schuller, K. Menten, P. Schilke, et al. Max Planck Institut für Radioastronomie.
5 Jan 2004, Boulder CO URSI The Current Status of the Green Bank Telescope.
The Murchison Wide Field Array Murchison, ~300 km from Geraldton.
Design and performance of fast transient detectors Cathryn Trott, Nathan Clarke, J-P Macquart ICRAR Curtin University.
Scuola nazionale de Astrofisica Radio Pulsars 3: Searches and Population Studies Outline Methods and early searches Globular Cluster searches Parkes Multibeam.
ATUC Meeting, 14 May 2009, Astro Issues Robert Braun.
Making MOPRA go! Lucyna Kedziora-Chudczer Friend of the telescope (UNSW)
Pulsar Searching + Receivers Matthew Bailes (CAASTRO), FPGAs: Peter Mc Mahon, Terry Fibila, Jonathon Kocz. CPUs: Willem van Straten, Andrew Jameson, Mike.
Australia Telescope 20 GHz survey (AT20G): An Update Ron Ekers (ATNF, PI),Sarah Burke(Haverford-Swinburne), Mark Calabretta (ATNF), Gianfranco De Zotti.
Short Time Fourier Transform-based method for fast transients detection Centre for eResearch, University of Auckland, New Zealand,
Finding Fast Pulsars Today andTomorrow Pulsar Timing Array - A Nanohertz Gravitational Wave Telescope July 21-23, 2005 Jason Hessels McGill University.
Binary Pulsar Coalescence Rates and Detection Rates for Gravitational Wave Detectors Chunglee Kim, Vassiliki Kalogera (Northwestern U.), and Duncan R.
Pulsar Studies at Urumqi Na Wang Urumqi Observatory, NAOC.
Arecibo Frontiers – 12 Sep Beyond the Frontiers: The Road From Arecibo to The Radio Synoptic Survey Telescope (RSST) Steven T. Myers National Radio.
The JCMT in the ALMA Era Surveying the Sub-millimetre Sky (Canada / Netherlands / Great Britain) Doug Johnstone NRC/HIA.
Vicky Kaspi, McGill University CIFAR AGM Why Do We Need More Radio Pulsars?  Want to build a `Pulsar Timing Array’ (PTA) to detect gravitational.
Pulsar surveys at Arecibo and Green Bank David Champion Gravity Wave Meeting, Marsfield, Dec 2007.
Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array Phased Array Feed Development.
Introductory Overview Murray Lewis. Arecibo’s primary advantage is its unmatched sensitivity consequent on its large collecting area.
Rotating Radio Transients Maura McLaughlin West Virginia University 12 September 2007.
The Allen Telescope Array Douglas Bock Radio Astronomy Laboratory University of California, Berkeley Socorro, August 23, 2001.
ALFA Pulsar Surveys Jim Cordes, Cornell University Arecibo 16 March 2003 Pulsar Consortium meeting 1-2 Nov 2002 Preliminary survey plans Hardware needs.
First Exploration of MWA Deep Field Point Source Population C. Williams - PhD Thesis J. Hewitt – reporting some analysis.
1 1 CORNISH WORKSHOP Leeds, 13 th April 2007 James Green The Methanol Multibeam Project Project MMB.
Ming Zhu FAST Science Group General Technical Specification Spherical reflector : Radius ~ 300m, Aperture ~ 500m, Opening angle 110~120°
A Fan Beam Model for Radio Pulsars Hongguang Wang (王洪光) Center for Astrophysics, Guangzhou University 广州大学天体物理中心 Fast Pulsar Symposium 4.
Scalable cm-Wavelength Aperture Arrays
FRB Backend First Light
Sergei A. Trushkin , Sergei N. Fabrika, Peter G. Tsybulev
Searching FRB with Jiamusi-66m Radio Telescope
Gravitational Waves and Pulsar Timing
Pulsar Timing with ASKAP Simon Johnston ATNF, CSIRO
Jim Cordes Legacy Projects Workshop
Pulsar and Transient Science with the 12m Antenna
The High Time Resolution Universe Survey Backend
Arecibo and ALFA Telescope upgrade ALFA = Arecibo L-band Feed Array
Rotating Radio Transients
ALFA/Arecibo pulsar surveys
Presentation transcript:

PULSAR SURVEYS (AO & GBT) Why? How deep can we go? (D max, V max ) Example surveys Hardware Funding

Why more pulsars? Extreme Pulsars: P 5 sec P orb G V > 1000 km s -1 Population & Stellar Evolution Issues Physics payoff (GR, LIGO, GRBs…) Serendipity (strange stars, transient sources) New instruments (AO, GBT, SKA) can dramatically increase the volume searched (galactic & extragalactic)

Simulated DM vs l histogram (50k pulsars)

How Low Can We Go? D max = D (S / S min1 ) 1/2 N h 1/4 S min1 = single harmonic threshold = m S sys /(  T) 1/2 m = no. of sigma N h = no. of harmonics that maximize harmonic sum N h  0 for heavily broadened pulses Regimes: Luminosity limited D max  S min1 -1/2 DM/SM limited D max  S min1 -x, x<1/2

Finding D max beam luminosity beam widths (core,cone) orientation angles (  pulse shape at nominal distance (1 kpc) D max = D nom [H(N h )/S min1 ] 1/2 H(N h ) = max N h -1/2  W i W ORB W DM W SM W TC W HPF [ D max = D max (DM, SM)  iterate ]

SEARCH VOLUME: V S =   S D 3 max DETECTION VOLUME: V d =  S  0 Dmax dD D 2 n p /n p (sun)

Regimes for D max Luminosity limited: (r -2 law) Dispersion limited:  t   ch DM / 3 Scattering limited:  t  SM 5/6 / 4.4 Time constant limited:  t TC  t TC (min) = (  ch ) -1

Dmax example

Dmax vs L p

Dmax vs. P (0.43 GHz)

Dmax vs. P (larger L p )

Dmax vs. P (1.4 GHz)

Dmax for B (L band)

Implications After maximizing  T (RFI,TAC constraints), the control parameters for Dmax are l,b,,N ch  optimal directions to search (modulo RF and where pulsars are) Coherent dedispersion for searches? (not worth it if scattering limited… better to put processing power into binary searches)

AO, GBT, Parkes

Compare AO,GBT & Parkes(Lband) S sys  N ch T S min1 d  /dT (Jy) (MHz) (s) (  Jy) (hr/deg 2 ) AO /N b GBT /N b Parkes (N b=13 )

Compare AO,GBT & Parkes(Lband) DM c Dmax for L p =10 mJy kpc 2,l=30,b=5  ms33 ms 89 ms AO27 3 kpc8 kpc 8 kpc GBT Parkes

Strawman AO Surveys L band 7 beams 400 MHz/512 channels/beam (multi WAPP) 300 s/beam  6 hr/deg hr  500 deg 2 Search volume  3 to 20 x Parkes MB (l,b,P dependent) S band? Advantage for very fast,weak pulsars & flat spectrum pulsars at low b

AO at S,L,P bands

OPTIMAL DIRECTIONS AO advantage: collecting area smaller channel bandwidths  choose directions where Parkes MB is luminosity or DM limited. (SM limited  less advantage per decrease in S min1 ) e.g.along spiral arm tangents Cygnus region | b | > few degrees (period dependent)

Shopping List Multibeam system (Feeds/Rx) e.g. L Digital backends (multi WAPP) Data storage Processing Followup $$$ for all of the above

Ideas Multibeam systems: e.g. Rick Fisher’s focal plane sampling + beamforming system Digital backends: AO: WAPP x 4 x Nbeams GBT: GBT correlator + fast dump Storage/processing: Moore’s law Followup: dedicated timing telescopes (85ft, 1HT, AO?) $$$: NSF MRI consortium proposal, private funding?