Laser spectroscopic study of estrogen and its hydrated clusters in a supersonic jet ○ Fumiya Morishima, Yoshiya Inokuchi, Takayuki Ebata Graduate School.

Slides:



Advertisements
Similar presentations
Fourier transform microwave spectrum of isobutyl mercaptan Kanagawa Institute of Technology 1 and The Graduate University for Advanced Studies 2 Yugo Tanaka,
Advertisements

Condensed phase vs. Isolated gas phase spectra Solution phase A A A A A A W W W W W WW W W W W W W W W W W W: water A: sample ( nm) ( nm) Isolated.
5/23/2015 International Symposium on Molecular Spectroscopy : 65th Meeting 1 DOUBLY HYDROGEN BONDED BIS-(4-HYDROXYPHENYL)METHANE DIMERS. Chirantha P. Rodrigo,
Ryunosuke Shishido, Asuka Fujii Department of Chemistry, Graduate School of Science, Tohoku University, Japan Jer-Lai Kuo Institute of Atomic and Molecular.
Laser Induced Fluorescence Structural information about the ground and excited states of molecules. Excitation experiments  Excited state information.
Infrared Spectroscopy of Doubly-Charged Metal-Water Complexes
Infrared spectroscopy probing of blue-shifting C–HO hydrogen-bonded
INFRARED SPECTROSCOPIC STUDY ON FERMI RESONANCE OF THE EXCESS PROTON VIBRATION IN BINARY CLUSTERS Ryunosuke SHISHIDO, Asuka FUJII Department of Chemistry,
Int. Symp. Mol. Spectrosc. (June 21-25, 2010) Laser Spectroscopic Study on Encapsulation Structure of Functional Molecules in Supersonic Jets Laser Spectroscopic.
Electronic spectra of calix[n]arene and its van der Waals clusters in supersonic jets T. Ebata, k. Nishimoto, N. Hontama, and Y. Inokuchi Chemistry Department,
VADIM L. STAKHURSKY *, LILY ZU †, JINJUN LIU, TERRY A. MILLER Laser Spectroscopy Facility, Department of Chemistry, The Ohio State University 120 W. 18th.
Aloke Das Indian Institute of Science Education and Research, Pune Mimicking trimeric interactions in the aromatic side chains of the proteins: A gas phase.
Structure and vibrational spectroscopy of cyclic diketones and their hydrogen bonded complexes in cold inert gas matrices Amit K. Samanta, Prasenjit Pandey,
VIBRATIONAL ENERGY RELAXATION OF BENZENE DIMER STUDIED BY PICOSECOND TIME-RESOLVED INFRARED-ULTRAVIOLET PUMP-PROBE SPECTROSCOPY R. KUSAKA and T. EBATA.
A Protein Folding Nucleus in the Gas Phase Jessica Thomas and David Pratt University of Pittsburgh Michel Mons, François Piuzzi, Eric Gloaguen, and Benjamin.
Microwave Spectrum of Hydrogen Bonded Hexafluoroisopropanol  water Complex Abhishek Shahi Prof. E. Arunan Group Department of Inorganic and Physical.
Praveenkumar Boopalachandran, 1 Jaan Laane 1 and Norman C. Craig 2 1 Department of Chemistry, Texas A&M University, College Station, Texas Department.
Andrew Durgan Department of Chemistry & Biochemistry Gonzaga University September 24, 2009.
Pulsed-jet discharge matrix isolation and computational study of Bromine atom complexes: Br---BrXCH 2 (X=H,Cl,Br) OSU 66 th International Symposium on.
Nonradiative Decay Dynamics of Methyl-4-hydroxycinnamate and its Monohydrated Complex revealed by Picosecond Pump-Probe Spectroscopy T. Ebata 1, D. Shimada.
Electronic Spectroscopy of Palladium Dimer (Pd 2 ) 68th OSU International Symposium on Molecular Spectroscopy Yue Qian, Y. W. Ng and A. S-C. Cheung Department.
Microscopic Compatibility between Methanol and Water in Hydrogen Bond Network Development in Protonated Clusters Asuka Fujii, Ken-ichiro Suhara, Kenta.
Laboratory of Molecular Spectroscopy, Pusan National University, Pusan, Republic of Korea Spectroscopic identification of isomeric trimethylbenzyl radicals.
CONFORMATIONAL SPECIFIC SPECTROSCOPY OF JET COOLED 3-(4-HYDROXYPHENYL)-N-BENZYL- PROPIONAMIDE (HNBPA) ESTEBAN E. BAQUERO, V. ALVIN SHUBERT, AND TIMOTHY.
Conformation specific spectroscopy of jet- cooled 4-phenyl-1-butene Joshua A. Sebree, Josh J. Newby, Nathan R. Pillsbury, Timothy Zwier Department of Chemistry,
Bonding & dynamics of CN-Rg and C 2 -Rg complexes Jiande Han, Udo Schnupf, Dana Philen Millard Alexander (U of Md)
Rotationally-Resolved Spectroscopy of the Bending Modes of Deuterated Water Dimer JACOB T. STEWART AND BENJAMIN J. MCCALL DEPARTMENT OF CHEMISTRY, UNIVERSITY.
STUDY ON THE VIBRATIONAL DYNAMICS OF PHENOL AND PHENOL-WATER COMPLEX BY PICOSECOND TIME- RESOLVED IR-UV PUMP-PROBE SPECTROSCOPY Yasunori Miyazaki, Yoshiya.
Laser desorption supersonic jet spectroscopy of hydrated tyrosine June 18th, 2013 Hikari OBA Tokyo Tech, Japan.
Electronic and vibronic spectroscopy of crown ether water complexes: benzo-15-crown-5 (B15C) and 4’-aminobenzo- 15-crown (ABC) V. Alvin Shubert and Timothy.
62nd OSU International Symposium on Molecular Spectroscopy TA12 Laser Spectroscopy of Iridium Monoboride Jianjun Ye, H. F. Pang, A. M-Y. Wong, J. W-H.
1 CHIRAL RECOGNITION IN NEUTRAL AND IONIC MOLECULAR COMPLEXES Ananya Sen, Aude Bouchet, Valeria Lepere, Katia Le Barbu Debus, Anne Zehnacker Rentien Institut.
IR spectra of Methanol Clusters (CH3OH)n Studied by IR Depletion and VUV Ionization Technique with TOF Mass Spectrometer Department of Applied Chemistry.
Hydrogen Bond Ring Opening and Closing in Protonated Methanol Clusters Probed by Infrared Spectroscopy with and without Ar-Tagging Toru Hamashima, Kenta.
Victoria P. Barber and Josh J. Newby TK14 Department of Chemistry and Biochemistry, Swarthmore College Swarthmore, PA Spectroscopic characterization.
DISPERSED FLUORESCENCE (DF) SPECTROSCOPY OF JET-COOLED METHYLCYCLOHEXOXY (MCHO) RADICALS Jahangir Alam, Md Asmaul Reza, Amy Mason, Neil Reilly and Jinjun.
The Ohio State University International Symposium on Molecular Spectroscopy 68th Meeting - - June 17-21, 2013 Microwave Spectrum of Hexafluoroisopropanol,
Hydrogen-bond between the oppositely charged hydrogen atoms It was suggested by crystal structure analysis. A small number of spectroscopic studies have.
D. Zhao, K.D. Doney, H. Linnartz Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, the Netherlands T he 3 μm Infrared Spectra.
Itaru KURUSU, Reona YAGI, Yasutoshi KASAHARA, Haruki ISHIKAWA Department of Chemistry, School of Science, Kitasato University ULTRAVIOLET AND INFRARED.
Spectroscopic investigation of temperature effects on the hydration structure of phenol cluster cation Reona YAGI, Yasutoshi KASAHARA, Haruki ISHIKAWA.
Decoding Dynamical Information from Vibrational Spectra.
The Cyclic CO 2 Trimer: Observation of two parallel bands and determination of intermolecular out-of-plane torsional frequencies Steacie Institute for.
INFRARED AND ULTRAVIOLET SPECTROSCOPY OF JET-COOLED 2-BENZYLPHENOL: I STRUCTURE AND LARGE-AMPLITUDE TORSIONAL MOTION CHIRANTHA P. RODRIGO, CHRISTIAN W.
High-resolution mid-infrared spectroscopy of deuterated water clusters using a quantum cascade laser- based cavity ringdown spectrometer Jacob T. Stewart.
HUI LIU, JINJUN LIU, Department of Chemistry, HEMANT M. SHAH and BRUCE W. ALPHENAAR, Department of Electrical & Computer Engineering, University of Louisville.
Conformational effects on resolved emission spectra of floppy aromatic molecules Sujit S. Panja Department of chemistry Indian Institute of Technology.
Yu-Shu Lin, Cheng-Chung Chen, and Bor-Chen Chang Department of Chemistry National Central University Chung-Li 32001, Taiwan ~ ~ Electronic Spectroscopy.
CONFORMATION-SPECIFIC ELECTRONIC AND VIBRATIONAL SPECTROSCOPY OF DIBENZO-15-CROWN-5 ETHER IN A SUPERSONIC JET. Evan Buchanan, Chirantha P. Rodrigo, William.
CONFORMATION-SPECIFIC ELECTRONIC SPECTROSCOPY OF JET-COOLED 5-PHENYL-1-PENTENE NATHAN R. PILLSBURY, TALITHA M. SELBY, AND TIMOTHY S. ZWIER, Department.
The Overtone Spectrum of HOONO: A Twisted Tale Juliane L. Fry, Andrew Mollner, Paul Wennberg, Mitchio Okumura California Institute of Technology Anne B.
CHAPTER 11 Alkenes; Infrared Spectroscopy and Mass Spectroscopy.
Erin M. Duffy, Brett M. Marsh, Jonathan M. Voss, Etienne Garand University of Wisconsin, Madison International Symposium on Molecular Spectroscopy June.
Encapsulation of water molecules by dibenzo- 18-crown-6-ether in a supersonic jet Ryoji Kusaka, Yoshiya Inokuchi, Kenji Kawasaki, Takayuki Ebata* Department.
Nonradiative Decay Route of Cinnamate Derivative studied by  Frequency and Time Domain Laser Spectroscopy in the gas phase, Matrix Isolation FTIR Spectroscopy.
Jacob T. Stewart and Bradley M
Infrared spectroscopic investigation
Quantum Dynamics Studies of the Vibrational States of HO3(X2A”)
Gas Phase IR and UV Spectroscopy of Neutral Contact Ion Pairs
Jun Jiang, Angelar Muthike, and Robert W. Field
CAITLIN BRAY CARA RAE RIVERA E. A. ARSENAULT DANIEL A. OBENCHAIN
(Kobe Univ. ) Takumi Nakano, Ryo Yamamoto, Shunji Kasahara
Fourier transform microwave spectra of n-butanol and isobutanol
Molecular Mechanism of Hydrogen-Formation in Fe-Only Hydrogenases
Stability of the HOOO Radical via Infrared Action Spectroscopy
High-resolution Laser Spectroscopy
T. L. Guasco, B. M. Elliott, M. Z. Kamrath and M. A. Johnson
Stepwise Internal Energy Control for Protonated Methanol Clusters
Asuka Fujii, Naohiko Mikami
71st ISMS UV Photodissociation Spectroscopy of Temperature-Controlled Hydrated Phenol Cluster Cation Itaru KURUSU, Reona YAGI, Yasutoshi KASAHARA, Haruki.
Presentation transcript:

Laser spectroscopic study of estrogen and its hydrated clusters in a supersonic jet ○ Fumiya Morishima, Yoshiya Inokuchi, Takayuki Ebata Graduate School of Science, Hiroshima Univ.

Introduction A D D Fukuzawa et al. Journal of Computational Chemistry In estrogen receptor Cegelski et al. Drug Development Research In membrane estriol(E 3 ) A D estrone(E 1 ) A D β-estradiol(E 2 ) A D estrogen B C B C B C

Introduction Investigate the structure of bare estrogen and its hydrated clusters to clarify their hydrogen bonding ability. estriol(E 3 ) A D estrone(E 1 ) A D β-estradiol(E 2 ) A D estrogen B C B C B C

Experimental and Computational vacuum chamber He gas IR laser UV laser ~4 atm Supersonic jet Vacuum chamber heater temperature estrone : ~150 ℃ estradiol : ~130 ℃ estriol : ~190 ℃ Electronic spectra LIF To differentiate bands UV-UV hole-burning(HB) Vibrational spectra IR-UV double resonance experimental Quantum chemical calculation M05-2X / G**

S 1 -S 0 Electronic Spectra of Bare Estrogen a bc d UV wavenumber / cm -1 LIF and UV-UV HB spectra of bare estrogen Number of conformer = 4 = 6 or more? = 2 Each conformer of estrogen originates from orientation of OH group(s) estrone estradiol estriol

IR Spectra of Bare Estrone UV wavenumber / cm IR wavenumber / cm -1 IR spectra in the region of OH stretching vibration IR spectra in the region of OH stretching vibration cis-estrone trans-estrone estrone(E 1 ) cis-estrone trans-estrone A D Number of conformer = 2 LIF

cis-estrone 1 2 UV wavenumber / cm -1 Assignment for cis- and trans- Conformation of Estrone trans-estrone Comparison of LIF spectra of estrone and results of TD-DFT calculation Comparison of LIF spectra of estrone and results of TD-DFT calculation cis-estrone trans-estrone

a bc d UV wavenumber / cm -1 estrone estradiol estriol Assignment for cis- and trans- Conformation of Estrogen cis-trans-

IR Spectra of Bare Estradiol UV wavenumber / cm -1 a b c d a b c d IR wavenumber / cm -1 β-estradiol(E 2 ) A-ring OH D-ring OH A-ring OH stretching vibrations… a, c show two bands b, d show only one band. A D estrone(E 1 ) A D IR spectra in the region of OH stretching vibration IR spectra in the region of OH stretching vibration Number of conformer = 4 cis- trans- LIF

16 17 Conformations of A-ring & D-ring anti: ~14cm -1 gauche(+): 0cm -1 gauche(-): ~73cm-1 cis trans anti gauche(+)

antigauche(+) Four conformers cis trans anti gauche(+) × Conformations of A-ring & D-ring 16 17

Assignment of D-ring OH Conformations a b c d IR wavenumber / cm -1 UV wavenumber / cm -1 a : anti b : gauche(+) c : anti d : gauche(+) cis -anti trans -gauche(+) cis -gauche(+) trans -anti

d: trans -gauche(+) b: cis -gauche(+) a: cis -anti c: trans -anti a b c d cis -anti trans -gauche(+) cis -gauche(+) trans -anti Assignment of bare estradiol

With water vapor Without water vapor Hydrated Cluster of Estradiol on A-ring UV wavenumber / cm -1 A B C D a b c d LIF and UV-UV HB spectra of monohydrated cluster of estradiol LIF and UV-UV HB spectra of monohydrated cluster of estradiol β-estradiol(E 2 ) Red shift = 350 cm -1 ~340 cm -1

IR Spectra of Hydrated Clusters of Estradiol on A-ring trans-anti-(H 2 O) 3641 band C trans-anti -(H 2 O) trans-anti ν 3 (H 2 O) ν 1 (H 2 O) trans-gauche(+) -(H 2 O) band D trans-gauche(+) ν 3 (H 2 O) ν 1 (H 2 O) trans-gauche(+)-(H 2 O) UV wavenumber / cm -1 C D LIF A B Each conformer forms hydrogen bond on A-ring OH as proton donor. ν(D-ring) ν(A-ring) ν(D-ring) ν(A-ring)

Another Isomer of Hydrated Cluster of Estradiol a b c d gauche(+) type proton donor anti type proton acceptor B C D Different patterns of hydrogen bond are conceivable for D-ring OH

IR Spectra of Bare Estriol UV wavenumber / cm -1 IR wavenumber / cm -1 IR spectra in the region of OH stretching vibration IR spectra in the region of OH stretching vibration estriol(E 3 ) A-ring OH cis region trans region IR wavenumber / cm -1 A-ring OH Band Bare estriol Band Hydrated cluster or its vibronic band A D cis- trans- LIF

Predicted Conformers of Bare cis-Estriol Conformational name Relative energy / cm c_16a_17a 810 3c_16g-_17a 208 3c_16g+_17a 740 3c_16a_17g c_16g-_17g c_16g+_17g c_16a_17g c_16g+_17g- 46.3

Intramolecular hydrogen bond Intramolecular hydrogen bond 3c_16a_17a 810 3c_16g-_17a 208 3c_16g+_17a 740 3c_16a_17g c_16g-_17g c_16g+_17g c_16a_17g c_16g+_17g Conformational name Relative energy / cm -1 Predicted Conformers of Bare cis-Estriol

IR Spectra of Bare cis-Estriol IR wavenumber / cm -1 UV wavenumber / cm estriol(E 3 ) 3c_16g-_17g+ 3c_16g-_17a 3c_16g+_17g Comparison of IR spectra of cis-estriol and results of frequency calculation Comparison of IR spectra of cis-estriol and results of frequency calculation 3c_16g-_17g c_16g+_17g c_16g-_17a 208 Bare estriol Form the intramolecular hydrogen bond between16OH and 17OH LIF cis-

Summary estrone(E 1 )β-estradiol(E 2 )estriol(E 3 )  monomer Assign the conformation of bare estrogen. Estriol forms intramolecular hydrogen bond  1:1 hydrated cluster of estradiol On A-ring Each conformer forms hydrogen bond on A-ring OH. On D-ring Different pattern of hydrogen bond are conceivable.  Future work Hydrated clusters of estrone / estriol Methoxy estrogen

Thank you for kindly listening to my presentation and my poor English

Relative energy of bare estrone / cm -1

anti gauche(-) gauche(+) Relative energy of bare estradiol / cm -1

≈ estradiol(A)-H 2 O estradiol(monomer) estradiol(D)-H 2 O Relative energy of clusters / cm -1

3c_16g-_17g c_16g+_17g c_16g-_17a208 3c_16a_17g-243 3c_16g+_17g+466 3c_16g+_17a740 3c_16a_17g+796 3c_16a_17a810 3t_16g-_17g t_16g+_17g t_16g-_17a207 3t_16a_17g-249 3t_16g+_17g+464 3t_16g+_17a730 3t_16a_17a796 3t_16a_17g+805 Relative energy of bare estriol Intramolecular hydrogen bond 16g-_17g+16g+_17g- 16g-_17a 16a_17g- 16g+_17g+16g+_17a 16a_17a 16a_17g+ / cm -1

IR Spectra of Bare Estrogen estradiol estrone estriol a b c d IR wavenumber / cm -1 IR spectra in the region of OH stretching vibration

cis-anti trans-anti trans-gauche(+) cis-gauche(+) Predicted Conformers M05-2X / G**

~410 cm -1 ~260 cm -1 Barrier between each D-ring conformation of estradiol ~820 cm -1 Without ZPE correction

810 cm -1 cis trans Rotation of A-ring OH Without ZPE correction

π (HOMO) π* (LUMO) cis-anti trans-anti HOMO and LUMO of Estradiol

cis -anti trans -gauche(+) cis -gauche(+) trans -anti a b c d cis -anti trans -gauche(+) cis -gauche(+) trans -anti Assignment of A-ring OH conformations

estradiol(D)-H 2 O Estradiol(D)-H 2 O cis-anti trans-gauche(+) cis-gauche(+) trans-anti cis-anti trans-gauche(+) cis-gauche(+) trans-anti gauche(+) type proton donor anti type proton acceptor red shift blue shift

1-cis-naphthol 1-trans-naphthol 2-trans-naphthol 2-cis-naphthol M05-2X / G** TD-DFT calculation

TD-DFT Calculation for conformers of bare estriol UV wavenumber / cm -1 trans- 16g+_17g-16g+_17a16g+_17g+16a_17g-16a_17a16g-_17a16a_17g+16g_17g+ Position / cm Relative energy / cm cis- 16g+_17g-16g+_17a16g+_17g+16a_17g-16a_17a16g-_17a16a_17g+16g_17g+ Position / cm Relative energy / cm cis- trans-

Lifetime Time / ns Monomer Cluster τ = 5 ns τ = 15 ns

Predicted Conformers of Bare trans-Estriol Conformational name Relative energy / cm t_16a_17a 796 3t_16g-_17a 207 3t_16g+_17a 730 3t_16a_17g t_16g-_17g t_16g+_17g t_16a_17g t_16g+_17g- 46.3

Predicted Conformers of Bare trans-Estriol 3t_16a_17a 796 3t_16g-_17a 207 3t_16g+_17a 730 3t_16a_17g t_16g-_17g t_16g+_17g t_16a_17g t_16g+_17g Conformational name Relative energy / cm -1

IR wavenumber / cm IR spectra of Bare Estriol 16g-_17g+ 16g+_17g- 16g-_17a 16a_17g- 16g+_17g+ 16g+_17a 16a_17a 16a_17g+ 16g-_17g+ 16g+_17g- 16g-_17a 16a_17g- 16g+_17g+ 16g+_17a 16a_17a 16a_17g+ cis region trans region Intramolecularhydrogen bond

Relative Energy of Monohydrated Estriol Isomers 3t_16g+_17g-_(A)-H 2 O3t_16g+_17g-_(D)-H 2 O 0.00 cm -1 ~1,000 cm -1 More stable

Relative Energy of Monohydrated Estradiol Isomers cis-gauche(+)-(A)-H 2 O cis-gauche(+)-(D)-H 2 O cis-anti-(D)-H 2 O 0.00 cm -1 ~330 cm -1 ~460 cm -1 More stable cis-anti-(A)-H 2 O 62.9cm -1