J-PARC K1.8 ビームラインにおけ る ペンタクォーク探索実験 白鳥 昂太郎 for the E19 collaboration 日本原子力研究開発機構 (JAEA) 先端基礎研究センター (ASRC) ハドロン物理研究グループ KEK Theory Center J-PARC Hadron.

Slides:



Advertisements
Similar presentations
Hadron physics with GeV photons at SPring-8/LEPS II
Advertisements

29 June 2004Steve Armstrong - Searches for Pentaquark Production at LEP1 Searches for Pentaquark Production at LEP Steve Armstrong (ALEPH Collaboration)
May/27/05 Exotic Hadron WS 1 Hypothetical new scaler particle X for  + and its search by the (K +, X + ) reaction T. Kishimoto Osaka University.
03 Aug NP041 KOPIO Experiment Measurement of K L    Hideki Morii (Kyoto Univ.) for the KOPIO collaborations Contents Physics Motivation.
Strange Pentaquarks Michał Praszałowicz
A.Kubarovsky, V.Popov. Recent results from SVD-2 experiment QFTHEP 17 June 2004 Recent results from SVD-2 experiment 1.Current status 2.Pentaquark search.
Search for Θ + Pentaquark by looking at missing mass spectrum in reaction γ * D Λ(1520)X in HERMES data Grigor Aslanyan Yerevan State University September.
1 Overview of Pentaquark Searches T. Nakano RCNP, Osaka University UCLA, March 27, 2006.
Search for  + via K + p   + X reaction with high-resolution spectrometer system Kyoto University S. Dairaku for E559 collaboration.
 *(1520) CrossSection Zhiwen Zhao Physics 745. Λ BARYONS (S = − 1, I = 0) Λ 0 = u d s Λ(1520) D 03 I( J P ) = 0( 3/2 − ) Mass m = ± 1.0 MeV [a]
Study of two pion channel from photoproduction on the deuteron Lewis Graham Proposal Phys 745 Class May 6, 2009.
Study of e + e  collisions with a hard initial state photon at BaBar Michel Davier (LAL-Orsay) for the BaBar collaboration TM.
Experimental Review of Pentaquarks: Positive and Null Results SLAC Seminar February 17, 2005 Ken Hicks (Ohio University)
J-PARC: Where is it? J-PARC (Japan Proton Accelerator Research Complex) Tokai, Japan 50 GeV Synchrotron (15  A) 400 MeV Linac (350m) 3 GeV Synchrotron.
HLab meeting 10/14/08 K. Shirotori. Contents SksMinus status –SKS magnet trouble –Magnetic field study.
HYP03 Future Hypernuclear Program at Jlab Hall C Satoshi N. Nakamura Tohoku University 18 th Oct 2003, JLab.
T.C. Jude D.I. Glazier, D.P. Watts The University of Edinburgh Strangeness Photoproduction At Threshold Energies.
Medium heavy Λ hyper nuclear spectroscopic experiment by the (e,e’K + ) reaction Graduate school of science, Tohoku University Toshiyuki Gogami for HES-HKS.
Sevil Salur for STAR Collaboration, Yale University WHAT IS A PENTAQUARK? STAR at RHIC, BNL measures charged particles via Time Projection Chamber. Due.
ハイパー核ガンマ線分光用 磁気スペクトロメータ -SksMinus- 東北大学 大学院理学研究科 白鳥昂太郎 ATAMI.
K 中間子原子核探索実験 ( J-PARC E15 実験) の解析状況 佐田優太 ( 京都大学、理研 ) Y.SADA for the E15 collaboration RCNP 研究会「核子・ハイペロン多体系における クラスター現象」 1.
Lambda hypernuclear spectroscopy at JLab Hall-C Graduate School of Science, Tohoku University Toshiyuki Gogami for the HES-HKS collaboration 1.Introduction.
Possibility for hypernuclei including pentaquark,   Kiyoshi Tanida (Seoul National Univ.) 19 Sep 2009 High resolution search for   &
The search for deeply bound kaonic nuclear states at J-PARC Toshihiko Hiraiwa Kyoto University On behalf of the J-PARC E15 collaboration.
P10-2: Exclusive Study on the  N Weak Interaction in A=4  -Hypernuclei (update from P10) S. Ajimura (Osaka Univ.) Osaka-U, KEK, OsakaEC-U, RIKEN, Seoul-U,
Contents 2 J-PARC E19 Collaboration 3 Pentaquark search 4 Genuine exotic hadron (uudds bar ) M = ~1540 MeV/c 2 (decay    KN) Situation is still controversial...
Evidence for a Narrow S = +1 Baryon Resonance in Photoproduction from the Neutron [Contents] 1. Introduction 2. Principle of experiment 3. Experiment at.
Setup for hypernuclear gamma-ray spectroscopy at J-PARC K.Shirotori Tohoku Univ. Japan for the Hyperball-J collaboration J-PARC E13 hypernuclear  -ray.
Omega meson in nucleus, experimental study K. Ozawa (Univ. of Tokyo)
Motivation. Why study ground state hyperon electroproduction? CLAS detector and analysis. Analysis results. Current status and future work. M. Gabrielyan.
29/03/04A. Geiser, Recent Spectroscopy Results from ZEUS 1 Recent Spectroscopy Results from the (H1 and) ZEUS Experiments nSelected main topic: evidence/search.
Tampa Meeting April 16, Curtis A. Meyer Pentaquarks: An Experimental Overview Based, in part, on work carried out with Alex Dzierba and Adam Szczepaniak.
V.L. Kashevarov. Crystal Collaboration Meeting, Mainz, September 2008 Photoproduction of    on protons ► Introduction ► Data analysis.
Argonne March 2, Curtis A. Meyer Pentaquarks: An Experimental Overview Based, in part, on work carried out with Alex Dzierba and Adam Szczepaniak.
1 Tomoaki Hotta (RCNP, Osaka Univ.) for The LEPS Collaboration Cracow Epiphany Conference, Jan 6, 2005 Introduction LEPS experiment Results from new LD.
A search for deeply-bound kaonic nuclear states in (in-flight K -, N) reaction Hiroaki Ohnishi RIKEN.
Forum at Shanghai 1 ++ ++ June 28-29, 2005 Search for Exotic Pentaquark and in Jefferson Lab WangXu Duke University/MIT Motivation The Jlab experiments.
大阪大学 核物理研究センター 村松 憲仁 RCNP workshop for J-PARC, 11 Nov. Osaka 低エネルギー K + ビームを用いた物理 ~~~ Contents ~~~ - LD 2 results at Spring-8/LEPS - Objectives.
Hadron Spectroscopy with high momentum beam line at J-PARC K. Ozawa (KEK) Contents Charmed baryon spectroscopy New experiment at J-PARC.
Study of Neutron-Rich  Hypernuclei Tomokazu FUKUDA Osaka Electro-Communication University 2013/09/091EFB 22.
22 September 2005 Haw05 1  (1405) photoproduction at SPring-8/LEPS H. Fujimura, Kyoto University Kyoto University, Japan K. Imai, M. Niiyama Research.
Λ and Σ photoproduction on the neutron Pawel Nadel-Turonski The George Washington University for the CLAS Collaboration.
SksMinus status Hyperball collaboration meeting 2009/3/11 K. Shirotori.
Oct 6, 2008Amaresh Datta (UMass) 1 Double-Longitudinal Spin Asymmetry in Non-identified Charged Hadron Production at pp Collision at √s = 62.4 GeV at Amaresh.
Yudai Ichikawa (Kyoto University/JAEA) 2013/07/26 RCNP 研究究会「核子・ハイペロン多体系におけるクラスター現 象」 1 J-PARC における d(π +, K + ) 反応を 用いた K 中間子原子核の探索.
Pentaquarks: Discovering new particles
Search for pentaquarks: the experimental program at CLAS S. Niccolai, IPN Orsay for the CLAS collaboration Epiphany Conference Krakov, Introduction.
Search for the  + in photoproduction experiments at CLAS APS spring meeting (Dallas) April 22, 2006 Ken Hicks (Ohio University) for the CLAS Collaboration.
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
Master thesis 2006 Shirotori1 Hypernuclear gamma-ray spectroscopy at J-PARC K1.8 beam line 東北大学大学院理学研究科 原子核物理 白鳥昂太郎.
Search for double-kaonic nuclear cluster (K - K - pp) using p+p reaction F.Sakuma, RIKEN discussion is based on Proc. Jpn. Acad., Ser. B, 87 (2011) ,
Exotic baryon resonances in the chiral dynamics Tetsuo Hyodo a a RCNP, Osaka b ECT* c IFIC, Valencia d Barcelona Univ. 2003, December 9th A.Hosaka a, D.
Roman Mizuk (ITEP, Moscow) Search for the Θ + pentaquark using kaon secondary interactions at Belle Outline Detector, idea Search for inclusive production.
J-PARC でのシグマ陽子 散乱実験の提案 Koji Miwa Tohoku Univ.. Contents Physics Motivation of YN scattering Understanding Baryon-Baryon interaction SU(3) framework Nature.
Lambda hypernuclear spectroscopy up to medium heavy mass number at JLab Hall-C Graduate School of Science, Tohoku University Toshiyuki Gogami for the HES-HKS.
J-PARC における 4  He の生成と構造の研究 東北大学 大学院理学研究科 白鳥昂太郎 for the Hyperball-J Collaboration.
Hypernuclear gamma-ray spectroscopy at J-PARC K1.8 Beam line Tohoku Univ. K.Shirotori 東北大学 大学院理学研究科 白鳥昂太郎.
15 cm Plots of missing mass spectrum and 90% interval for width of 0.5 and 10 MeV. Color lines show upper limit, lower limit and sensitivity. Search for.
P.F.Ermolov SVD-2 status and experimental program VHMP 16 April 2005 SVD-2 status and experimental program 1.SVD history 2.SVD-2 setup 3.Experiment characteristics.
E. Robutti Enrico Robutti I.N.F.N. Genova HEP 2003 Europhysics Conference July 17-23, Aachen, Germany Recent BABAR results in Charmonium and Charm Spectroscopy.
1 Recent Results on J/  Decays Shuangshi FANG Representing BES Collaboration Institute of High Energy Physics, CAS International Conference on QCD and.
1 Exotic States 2005 E.C. Aschenauer The search for Pentaquarks at on behalf of the HERMES Collaboration E.C. Aschenauer DESY.
Search for the K  pp bound state via the in-flight 3 He(K ,n) reaction MESON2014 Yuta Sada for the E15 collaboration RCNP, Osaka Univ & RIKEN 1.
Search for a nuclear kaon bound state K - pp at the J-PARC K1.8 beam line. Dep. of physics, Kyoto University / JAEA Y. Ichikawa for E27 Collaboration Korea-Japan.
2011/9/221 Koji Miwa Tohoku Univ. For the J-PARC E40 Collaboration Sigma proton scattering experiment E40.
Pentaquarks1 Curtis A. Meyer Pentaquarks: An Experimental Overview Based, in part, on work carried out with Alex Dzierba and Adam Szczepaniak Before 2003.
The Experimental Search for Pentaquarks: Overview and Perspectives S. Niccolai, IPN Orsay (for the CLAS Collaboration) QCD04 Montpellier 5/7/2004 Introduction.
L*(1520) Photoproduction off Proton and Neutron from CLAS eg3 data set
Search for Exotic Hadrons, H-dibaryon resonance and Pentaquark
E19 result Ryuta Kiuchi (SNU)
Presentation transcript:

J-PARC K1.8 ビームラインにおけ る ペンタクォーク探索実験 白鳥 昂太郎 for the E19 collaboration 日本原子力研究開発機構 (JAEA) 先端基礎研究センター (ASRC) ハドロン物理研究グループ KEK Theory Center J-PARC Hadron Salon 2011/9/29

E19 collaboration 2 Collaborator :~70 people. Students: 1/3

Contents Introduction ­ Search for   ­ Hadronic reaction Experiment & Analysis ­ Experimental apparatus ­ Data spectra Result & Discussion Summary Future plan 3

Introduction 4

  pentaquark baryon 5 T. Nakano et al., Phys. Rev. Lett., 91:012002,   : First reported by the LEPS collaboration ­ S = +1 (uudds) ­  n→K    →K  K  n ­ M=1540±10 MeV/c 2 ­  < 25 MeV/c 2 (Experimental resolution)   : Predicted by Diakonov et al. ­ Anti-decuplet ­ M~1530 MeV/c 2,  <15 MeV/c 2 Good agreement between theory and experiment ⇒ Triggered investigation of the   pentaquark _

What can we lean from pentaquark ? 6 QCD : Hadrons to be a color singlet, not restrict the number of quarks ⇒ Exotic hadron can exist. Exotic hadrons with heaver quark (tetraquark) by Belle X(3872), X(3940), Y(4260), Z + (4430), Z b …. * Hadron multi-quark components Pentaquark (  + ) Z + (4430) M(  '  ) (GeV) Events/0.01GeV S.-K. Choi et al., Phys. Rev. Lett., 100, (2008)

What can we lean from pentaquark ? 7 QCD : Hadrons to be a color singlet, not restrict the number of quarks ⇒ Exotic hadron can exist.    property (if exist) ­ Very narrow decay width  ~a few MeV ? ⇔  ~ several 10 MeV ⇒ Some mechanism to suppress decay Internal configuration change of quarks ? * What is the building block of exotic hadron ? ­ Molecular : Baryon + meson : n(udd)+K + (us) c.f.  (1405) ­ Di-quark : (u-d) + (u-d) + s (Jaffe et al., Phys. Rev. Lett. 91, (2003).) Exotic hadron ⇒ General property of hadron _ _ Pentaquark (  + ) Di-quark picture Molecular Rigid core (q 3 ) Meson Fields (qq) L=1 (ud) s    : To be OR not to be

Present status of  + 8    status : Many positive results & Many negative results Positive results ­ LEPS new report :  d →p K  K  n ­ CLAS(p) :  p→   K    →   K  K  n ­ DIANA : K  n →   →K  p Negative results ­ High energy experiments ­ CLAS :  d→p K    →p K  K  n * High statistics & high sensitivity ⇒ Controversial situation * Width DIANA : K  n →   →K  p ­  = 0.39±0.1 MeV/c 2 BELLE : K  n →K  pX ­  < 0.64 MeV/c 2 (90% C.L.) * Low energy hadron reaction (  or K beam) ­ Few data ­ Expected larger production cross section ⇒ Essential part for the investigation of  

Present status of  + 9 Positive results Negative results

Positive Results 10 Experiments with positive evidence Better statistics is needed (significance ~ 5  ) CLAS-d 5.2  DIANA 4.4  LEPS 4.6  SAPHIR 4.8  ITEP 6.7  CLAS-p 7.8  HERMES 4.2  ZEUS 4~5  COSY-TOF 4~6  SVD 5.6  LEPSDIANA CLAS-d HERMES ITEP COSY-TOF ZEUS SVD SAPHIR CLAS-p

Negative Results 11 FOCUS BABAR SPHINX CDF BES BELLE LEP HERA-B HyperCP PHENIX (   ) 

   status : Many positive results & Many negative results Positive results ­ LEPS new report :  d →p K  K  n ­ CLAS(p) :  p→   K    →   K  K  n ­ DIANA : K  n →   →K  p Negative results ­ High energy experiments ­ CLAS :  d→p K    →p K  K  n * High statistics & high sensitivity ⇒ Controversial situation * Width DIANA : K  n →   →K  p ­  = 0.39±0.1 MeV/c 2 BELLE : K  n →K  pX ­  < 0.64 MeV/c 2 (90% C.L.) * Low energy hadron reaction (  or K beam) ­ Few data ­ Expected larger production cross section ⇒ Essential part for the investigation of   Present status of  + 12 LEPS DIANA CLAS

   status : Many positive results & Many negative results Positive results ­ LEPS new report :  d →p K  K  n ­ CLAS(p) :  p→   K    →   K  K  n ­ DIANA : K  n →   →K  p Negative results ­ High energy experiments ­ CLAS :  d→p K    →p K  K  n * High statistics & high sensitivity ⇒ Controversial situation * Width DIANA : K  n →   →K  p ­  = 0.39±0.1 MeV/c 2 BELLE : K  n →K  pX ­  < 0.64 MeV/c 2 (90% C.L.) * Low energy hadron reaction (  or K beam) ­ Few data ­ Expected larger production cross section ⇒ Essential part for the investigation of   Present status of  + 13 LEPS DIANA CLAS

14 LEPS & CLAS Reaction :  d →p K     → p K  K  n Difference : K ± detection angle ­ Forward : LEPS ­ Backward (side) : CLAS * Detection of re-scattering proton : CLAS K+K+ K−K− K+K+ K−K− CLAS LEPS Insensitive

15 LEPS & CLAS Reaction :  d →p K     → p K  K  n Difference : K ± detection angle ­ Forward : LEPS ­ Backward (side) : CLAS * Detection of re-scattering proton : CLAS Explained by experimental condition ⇒ Not contradicted

Present status of  + 16 LEPS DIANA CLAS    status : Many positive results & Many negative results Positive results ­ LEPS new report :  d →p K  K  n ­ CLAS(p) :  p→   K    →   K  K  n ­ DIANA : K  n →   →K  p Negative results ­ High energy experiments ­ CLAS :  d→p K    →p K  K  n * High statistics & high sensitivity ⇒ Controversial situation * Width DIANA : K  n →   →K  p ­  = 0.39±0.1 MeV/c 2 BELLE : K  n →K  pX ­  < 0.64 MeV/c 2 (90% C.L.) * Low energy hadron reaction (  or K beam) ­ Few data ­ Expected larger production cross section ⇒ Essential part for the investigation of  

17 “Best” positive evidence M(nK + ) 7.8    p →  + K  K + (n) CLAS: V. Kubarovsky et al. PRL (2004) Combined analysis of all CLAS data on protons for E  <5.5 GeV Cuts: forward  +, backward K + Indications of production from heavy N*(2420) ? E  ~ 3.2 – 5.47 GeV   proton  ++ N* K+K+ n KK

18 “Best” positive evidence M(nK + ) 7.8    p →  + K  K + (n) CLAS: V. Kubarovsky et al. PRL (2004) Combined analysis of all CLAS data on protons for E  <5.5 GeV Cuts: forward  +, backward K + Indications of production from heavy N*(2420) ? E  ~ 3.2 – 5.47 GeV   proton  ++ N* K+K+ n KK N*(2420) ?

Present status of  + 19 LEPS DIANA CLAS    status : Many positive results & Many negative results Positive results ­ LEPS new report :  d →p K  K  n ­ CLAS(p) :  p→   K    →   K  K  n ­ DIANA : K  n →   →K  p Negative results ­ High energy experiments ­ CLAS :  d→p K    →p K  K  n * High statistics & high sensitivity ⇒ Controversial situation * Width DIANA : K  n →   →K  p ­  = 0.39±0.1 MeV/c 2 BELLE : K  n →K  pX ­  < 0.64 MeV/c 2 (90% C.L.) * Low energy hadron reaction (  or K beam) ­ Few data ­ Expected larger production cross section ⇒ Essential part for the investigation of  

Hadronic reaction 20

21 Hadronic production Unknown coupling constant ­ g KN  & g K*N  (   ∝ g 2 KN  ) ⇒ No experimental information ⇒ Parameters in calculation + Form factor assumed from hyperon production Cross section (Case of J P  =1/2 + ) ­   + p → K  +  +  = 2  200  b (   = 5 MeV/c 2 ) Oh et al. Phys. Rev. D 69, (2004) ­   + p →   +  +  > 10  b (   = 1 MeV/c 2 ) Oh et al. Phys. Rev. D 69, (2004). Diagrams for calculation

22 Previous experiments at KEK-PS Both experiment : Only upper limit of cross section ­ E522 :  < 3.9  b (90% 1.92 GeV/c (S-wave production and isotropic K  emission ) ­ E559 :  < 3.5  b/sr (90% C.L.) E522 :   p → K   1.92 GeV/c E559 :   p →    1.20 GeV/c K. Miwa et al. Phys. Lett. B635, 72, K. Miwa et al. Phys. Rev. C77, , 

Present status from hadronic reactions   p → K   + :  < 3.9  b (90% C.L.) ­ Both g KN  & g K*N   are small. ­  < 10 MeV   p →    + :  < 3.5  b/sr (90% C.L.) ­ Low backward sensitivity ⇒ g K*N   ~ 0 CLAS result (Photo-production)  p→K 0   → K 0 K + n : upper limit < 0.8 nb ⇒ g K*N  ~ 0    production mechanism on hadron beams & property ­ Small K* coupling : g K*N   ~ 0 ­ s-channel dominance (   p → K   + ) ? ­ Very narrow width :  < 1 MeV/c 2 * Expect small cross section : Order of 100 nb ⇒ Need experiment with high sensitivity 23   p →    1.2 GeV/c g KN  & g K*N  Oh et al. Phys. Rev. D 69, (2004)

Present status from hadronic reactions   p → K   + :  < 3.9  b (90% C.L.) ­ Both g KN  & g K*N   are small. ­  < 10 MeV   p →    + :  < 3.5  b/sr (90% C.L.) ­ Low backward sensitivity ⇒ g K*N   ~ 0 CLAS result (Photo-production)  p→K 0   → K 0 K + n : upper limit < 0.8 nb ⇒ g K*N  ~ 0    production mechanism on hadron beams & property ­ Small K* coupling : g K*N   ~ 0 ­ s-channel dominance (   p → K   + ) ? ­ Very narrow width :  < 1 MeV/c 2 * Expect small cross section : Order of 100 nb ⇒ Need experiment with high sensitivity 24   p →    1.2 GeV/c g KN  & g K*N  Oh et al. Phys. Rev. D 69, (2004)

Present status from hadronic reactions   p → K   + :  < 3.9  b (90% C.L.) ­ Both g KN  & g K*N   are small. ­  < 10 MeV   p →    + :  < 3.5  b/sr (90% C.L.) ­ Low backward sensitivity ⇒ g K*N   ~ 0 CLAS result (Photo-production)  p→K 0   → K 0 K + n : upper limit < 0.8 nb ⇒ g K*N  ~ 0    production mechanism on hadron beams & property ­ Small K* coupling : g K*N   ~ 0 ­ s-channel dominance (   p → K   + ) ? ­ Very narrow width :  < 1 MeV/c 2 * Expect small cross section : Order of 100 nb ⇒ Need experiment with high sensitivity 25   p →    1.2 GeV/c g KN  & g K*N  Oh et al. Phys. Rev. D 69, (2004) PRD 74, (2006)

Present status from hadronic reactions   p → K   + :  < 3.9  b (90% C.L.) ­ Both g KN  & g K*N   are small. ­  < 10 MeV   p →    + :  < 3.5  b/sr (90% C.L.) ­ Low backward sensitivity ⇒ g K*N   ~ 0 CLAS result (Photo-production)  p→K 0   → K 0 K + n : upper limit < 0.8 nb ⇒ g K*N  ~ 0    production mechanism on hadron beams & property ­ Small K* coupling : g K*N   ~ 0 ­ s-channel dominance (   p → K   + ) ? ­ Very narrow width :  < 1 MeV/c 2 * Expect small cross section : Order of 100 nb ⇒ Need experiment with high sensitivity 26   p →    1.2 GeV/c Oh et al. Phys. Rev. D 69, (2004)

  search by high-resolution spectroscopy via   + p →  + + K  : J-PARC E19 Previous E522 experiment Reaction   + p →  + + K 1.92 GeV/c Upper limit of cross section ⇔ Mass resolution ○  M~14 MeV/c 2 (FWHM) (KURAMA spectrometer) J-PARC E19 Reaction   + p →  + + K 1.92 GeV/c ­ High resolution : SKS *  M< 2 MeV/c 2 (FWHM) ­ High statistics : High intensity beam ⇒ Conclusive result by higher sensitivity The first physics run at the J-PARC hadron facility ! 27 K. Miwa et al. Phys. Lett. B, 635:72, Spokesperson M. Naruki 2.6 

28 Goal of beam time in 2010 Original plan : 10 7   / 3.6 sec×6 days = 1.44 ×   ­ 3 momenta : 1.87, 1.92, 1.97 GeV/c ⇒ 4.80 ×10 11   ⇒ More than 60  peak (estimated by E522 upper limit) Realistic condition ­ 0.075×10 7   (750 k)/ 6 sec ⇒ 133 days Cannot use full beam intensity due to the beam micro-structure * Step 1: ­ Needs 6 days to confirm   with 1.92 GeV/c ­ 0.075×10 7   / 6 sec×6 days = 6.48 ×10 10   (Assuming 10% duty factor) >60  peak (simulation)  < 2 MeV/c 2

Experiment J-PARC Experimental apparatus Beam time 29

J-PARC & Hadron facility 30

J-PARC & Hadron facility MeV ~33  A 30 GeV 0.1  A, 3 kW MR present operation : 30 GeV, 1/100 intensity

32 Hadron facility High-p K1.1BR K1.8BR K1.8 Proton beam T1 target KL

33 Hadron facility & K1.8 beam line K1.8 beam line

34 Hadron facility & K1.8 beam line K1.8 beam line Primary proton beam (protons/spill) 30 GeV-9  A 2.0E+14 Length (m) Acceptance (msr.%)1.4 K - intensity GeV/c0.08E+06 Electrostatic separators750kV/10cm, 6m×2 Single 1.8 GeV/c > 8E+06 K - /(  - +  GeV/c 3.5 X/Y(rms) FF (mm)19.8/3.2

J-PARC K1.8 beam line General-purpose mass-separated beam line Max. momentum : 2 GeV/c ⇒ Major area of hadron and hypernuclear experiment Exotic hadron search  hypernuclei Hypernuclear  -ray spectroscopy n-rich hypernuclei YN scattering 35   Target K1.8 beam line spectrometer SKS

36 SKS (Superconducting Kaon Spectrometer) SKS magnet moved from KEK Magnetic field : 2.5T ⇒ Good momentum resolution (  p ∝ 1/BL 2 ) Small K decay : Short flight-path Large yield : Wide pole gap SKS performance (design value) Momentum resolution :  p/p ~ 2.0×10 -3 Angular acceptance : 100 msr Momentum range : GeV/c Present J-PARC

37 Status on Apr 2009 No infrastructure (electricity, cooling water), beam line magnet, detectors, cables…

38 Construction & Working SKS Set down at KEK : 2007 Detector construction : 2008 Installation : 2009/4-10

39 Status on Feb 2010 Commissioning 2009/ /2 All detectors checked and ready Commissioning data taken : p(  , K  )  , p(  , p)   E19 test data

40 Status on Feb 2010 Commissioning of K1.8 system successful  Commissioning 2009/ /2 All detectors checked and ready Commissioning data taken : p(  , K  )  , p(  , p)   E19 test data Performance of SKS  M  = 1.6 MeV/c 2 (FWHM) (p  = 1.25 GeV/c)

K1.8 beam line setup K1.8 beam line spectrometer & SKS ⇒ Missing mass spectroscopy K1.8 beam line spectrometer : p  PID counters ­ Timing counters : TOF ­ Gas Cherenkov (  /e) : n=1.002 Tracking ­ MWPCs : 1 mm pitch ­ MWDCs : 3 mm pitch SKS system : p K PID counters ­ Timing counter ­ Aerogel Cherenkov (K/  ) : n=1.05 ­ Lucite Cherenkov (K/p) : n=1.49 Tracking ­ MWDCs : 3 mm pitch ­ DCs : 10 mm pitch, 2m×1m size * Target: Liquid hydrogen ~0.86 g/cm 2 ­ Free from Fermi motion effect 41

Data summary of E19 * Beam time : 2010/10-11 (~250 hours) Data Empty run (no Liquid hydrogen) : Check background from target materials Calibration data : Check cross section, mass resolution, absolute value of missing mass ­ p(  , K + )   1.37 GeV/c ­ p(  , K + )   1.37 GeV/c * 1.37 GeV/c beam ⇒ Same as K momentum for    run   production run : October (50 hours)/November (82 hours) ­ p(  , K GeV/c ⇒ 7.8 ×10 10  (E522 total beam ×10 times) * Beam intensity : ~1 M/spill (2.2 sec extraction period) Due to the bad beam micro-structure 42

Analysis Data spectrum Cross section Missing mass resolution 43

44 Physics information Missing mass :   + p →  + + K 1.92 GeV/c (sqrt s = 2.14 GeV) ­    peak + Background (associated reaction) ○Incisive measurement Cross section (or upper limit) ­ Differential CS ○Scattering angle : 2°to ~15° ○Mass dependence : Angular acceptance ­ Total CS : Assuming angular dependence   mass (if observed) ­ Absolute value with a few MeV error Width ­ Direct measurement (if observed) ­ Estimated from cross section [GeV/c 2 ] Simulation 1.65 Assumed   = 2  b  M= 2 MeV/c 2 (FWHM)

45 Analysis chart New event ↓ Trigger counter : BH1&2, TOF, LC ↓ Time-of-flight, ADC&TDC cut SKS drift chamber : SDC1&2, SDC3&4 (Local tracking) SKS tracking : Scattered particle momentum ↓ K out selection K1.8 chamber : BC1&2, BC3&4 (Local tracking) K1.8 tracking : Beam momentum ↓  in selection Vertex reconstruction : ( , K) event reconstruction ↓ Good vertex event Missing mass : Cross section

46 Analysis chart New event ↓ Trigger counter : BH1&2, TOF, LC ↓ Time-of-flight, ADC&TDC cut SKS drift chamber : SDC1&2, SDC3&4 (Local tracking) SKS tracking : Scattered particle momentum ↓ K out selection K1.8 chamber : BC1&2, BC3&4 (Local tracking) K1.8 tracking : Beam momentum ↓  in selection Vertex reconstruction : ( , K) event reconstruction ↓ Good vertex event Missing mass : Cross section K event & Momentum : p K  event & Momentum : p  Event selection

Particle identification 47 Beam  ­ Time-Of-Flight Electrons rejected by GC ⇒ e/  ~ 1.92 GeV/c Scattered K ­ TOF + Path length & momentum ⇒ M 2 = p/  (1-  2 ) Beam  and scattered K are clearly separated. Mass square [(GeV/c 2 ) 2 ] Scattered particles 0.7 < p < 1.0 GeV/c Beam TOF *   data

Vertex reconstruction 48 Empty target 1.92 GeV/c ­ ~3 % background in the selected region LH 2 Empty Z Target cell Beam Empty target data Beam 120 mm

Missing mass 49  ± :  M  = 1.9 ± 0.1 MeV/c 2 (FWHM) ⇒ To estimate   missing mass resolution  M  = 1.4 ± 0.1 MeV/c 2 (FWHM) (  M ∝ M target/ M  ) Error of the absolute mass value : ~2 MeV/c 2  

50 Cross section Tracking part BC1&2, BC3&4, SDC1&2, SDC3&4, K1.8, SKS Single track selection Counter, PID part Beam  selection, TOF, LC, AC, scattered K selection Other part Decay, absorption, vertex, matrix trigger, acceptance TargetBeamOther analysisSKS

51 Efficiency studies Beam line chambers ⇒ Stability checked during the   production run Trigger counters, SDC3&4 ⇒ No position dependence Absorption, K decay, beam  contamination ⇒ Simulation by realistic experimental conditions with Geant4 BC3&4 tracking eff. October runs November runs SDC3&4 eff. vs x position

52 Cross section Tracking part BC1&2, BC3&4, SDC1&2, SDC3&4, K1.8, SKS Single track selection Counter, PID part Beam  selection, TOF, LC, AC, scattered K selection Other part Decay, absorption, vertex, matrix trigger, acceptance TargetBeamOther analysisSKS

Cross section:   53 Cos  K CM 1 p(  +, K + )  GeV/c D. J. Candlin et al. Nucl. Phys. B226(1983)1-28 p  =   run Old data converted to lab. frame The present data agrees well with the previous measurements.   cross section

Result Missing mass Cross section 54

Missing mass spectrum All event sum : 7.8×10 10   With event selection No prominent peak structure observed. 55   + p → K  GeV/c * If exists M  ~ 1.53 GeV/c 2 Preliminary

Comparison with background simulation 56 Simulation with measured cross section using angular distributions  production : uniform (S-wave)  (1520) : ∝ 1+cos 2  cm  (D-wave) BG reactions    p →  n→K  K  n  = 30±8  b)    p →  (1520) K  →K  K  p  = 21±5  b)    p →K  K  n    p →K  K  p  ~25  b) O. I. Dahl et al. Phys. Rev. B 163, 1377 (1967). (Bubble chamber data)

Comparison with background simulation 57 BG reactions    p →  n→K  K  n  = 30±8  b)    p →  (1520) K  →K  K  p  = 21±5  b)    p →K  K  n    p →K  K  p  ~25  b) O. I. Dahl et al. Phys. Rev. B 163, 1377 (1967). (Bubble chamber data) Data Sim (×1.0) Sim (×1.2) Simulation with measured cross section using angular distributions  production : uniform (S-wave)  (1520) : ∝ 1+cos 2  cm  (D-wave) * Agree within the error of old data : ~30%

Differential cross section 58 Differential cross section (Averaged ⇒ Obtain 90 % confidence level upper limit Width : 1.4 MeV/c 2 fixed (Estimated  data) Differential cross section Preliminary

Upper limit of cross section 59 Differential cross section (Averaged ⇒ Obtain 90 % confidence level upper limit Width : 1.4 MeV/c 2 fixed (Estimated  data) Scanning region GeV/c 2 BG shape ⇒ 3 rd order polynomial Peak shape ⇒ Gaussian (  =1.4 MeV/c 2 fixed) Differential cross section Preliminary

Upper limit of cross section 60 Upper limit cross section : <  1.55 GeV/c 2 Cross if M  = 1.53 GeV/c 2 Differential : 100 nb/sr (averaged 2°  15°) Total : 150 nb (S-wave production and isotropic K  emission ⇒ 8% acceptance) Scanning region GeV/c 2 BG shape ⇒ 3 rd order polynomial Peak shape ⇒ Gaussian (  =1.4 MeV/c 2 fixed) Assumed :   ~ 0 MeV/c 2 Preliminary Evaluation of systematic errors is ongoing.

Discussion 61

62 Experiment Total yield (10 times) + Resolution (13.6 MeV/c 2 ⇒ 1.4 MeV/c 2 ) ⇒ 10 times higher sensitivity Bump observed in E522 was not confirmed. Previous experiment : E522 Present experiment : E19 * If  total = 200  ~1 MeV/c 2 ⇒ > 200 counts peak Preliminary

 Theoretical calculation 63 P lab = 1.92 GeV/c PSFs 500MeV 9.2  b Fc 1800MeV 5.3  b PVFs 500MeV 0.51  b Fc 1800MeV 0.29  b Upper limit : < 0.3  1.54 GeV/c 2 Theoretical calculations : T. Hyodo, private communication J p =1/2 +,   = 1MeV * Integrated over the whole solid angle Preliminary

 Theoretical calculation 64 P lab = 1.92 GeV/c PSFs 500MeV 9.2  b Fc 1800MeV 5.3  b PVFs 500MeV 0.51  b Fc 1800MeV 0.29  b Upper limit : < 0.3  1.54 GeV/c 2 J p =1/2 +,   = 1MeV p lab =1.92GeV/c Fs 500MeV Fc 1800MeV * Upper limit of width  < 0.5 MeV/c Fs  < 1.0 MeV/c PV scheme Theoretical calculations : T. Hyodo, private communication * Integrated over the whole solid angle Preliminary

65 Cross section for  & photo-induced reaction Present result : < 300 nb/sr (2°-15°) LEPS result : 12±2 nb/sr (LEPS acceptance) Need PV scheme calculation for comparison + Photo-induced reaction by changing the   magnetic moment Liu&KoPSFs (0.5 GeV) 5  b  p  K  PSFc (1.2 GeV)~8 nb  p  K  OhPSw/o FF8 nb  p  K  PSFs (0.75)1.5 nb  p  K  PSFc( 1.8)24 nb  p  K  PSw/o FF 120  b  p  K  PSFs (0.5) 9  b  p  K  PSFc (1.8) 4  b  p  K 

66 Cross section for  & photo-induced reaction Present result : < 300 nb/sr (2°-15°) LEPS result : 12±2 nb/sr (LEPS acceptance) Consistency check * Need PV scheme calculation for comparison + Photo-induced reaction by changing the   magnetic moment  -induced : Nam et al. PLB633,483(2006) PV, Fc (0.75GeV), k Q =1 ­ for J P =1/2 +,  =1.5 nb at E  =2GeV ­ for J P =3/2 +,  =25 nb at E  =2GeV ­ for J P =3/2 -,  =200 nb at E  =2GeV ­ for J P =1/2 -,  ~0.3 nb* at E  =2GeV *hep-ph/  -induced : Hyodo, priv. comm. PV, Fs (0.5GeV), J P = 1/2 + –  =0.51  b at p  =1.92 GeV/c PV, Fc (1.8GeV), J P = 1/2 + –  =0.30  b at p  =1.92 GeV/c

Summary of E19 J-PARC E19 : High-resolution search via   p → K   + reaction The first physics experiment at the J-PARC hadron facility ! Data taking of E19 has been successfully carried out. ­ 7.8×10 10   irradiated on LH 2 target ­ Calibration data : p(  , K + )  1.37 GeV/c ○   missing mass resolution : 1.4 MeV/c 2 (FWHM) (Expected) ○Consistent   cross section (Measured) ⇒ More than 10 time higher sensitivity achieved. Preliminary experimental result * No clear   peak structure observed ­ Differential cross section :  < GeV/c 2 Lab, CM) ­ Total cross section :  < GeV/c 2 ⇔ Theoretical calculation (  ~ nb) ­ Upper limit of width :  < 1 MeV/c Fc * 1 st step of J-PARC E19 successfully finished ! ⇒ 2 nd step : 2 GeV/c beam data taking at K1.8 beam line 67

Future plan   search Other exotic hadron search 68

2 nd step beam time 69 Upper limit : < 0.3  1.54 GeV/c 2 P lab = 1.92 GeV/c P lab = 2 GeV/c PSFs 500MeV 9.2  b9.8  b Fc 1800MeV 5.3  b4.9  b PVFs 500MeV 0.51  b0.75  b Fc 1800MeV 0.29  b0.50  b * Integrated over the whole solid angle Sensitivity = 75 nb/sr (lab) corresponds to an stringent limit to the decay width of   : 1 MeV × (75 nb/sr / 300 nb/sr) < 0.2 MeV 2 GeV/c beam : the next step, take data & accumulate statistics. PV Fs 500MeV PV Fc 1800MeV sqrts [MeV]  [mb] J p =1/2 +,   = 1MeV Theoretical calculations : T. Hyodo, private communication p lab =2.0 GeV/c

Possibility N* coupling (g KN*  ) CLAS data suggested : Mass ~2.4 GeV/c 2 ⇒ Hadron beam : Threshold = p  ~2.5 GeV/c * Need higher momentum beam (K1.8 max: 2 GeV/c) 70 V. Kubarovsky et al. Phys. Rev. Lett. 92(2004) N * production diagram

71 High-p K1.1BR K1.8BR K1.8 Proton beam T1 target KL N* coupling (g KN*  ) CLAS data suggested : Mass ~2.4 GeV/c 2 ⇒ Hadron beam : Threshold = p  ~2.5 GeV/c * Need higher momentum beam (K1.8 max: 2 GeV/c) Possibility

K + n→  + →K S 0 p→  +  - p ­ p(K + ) = 417 (442) MeV/c ­ for M  = 1.53 (1.54) GeV/c 2 ⇒ K1.1BR beam line w/ degrader  +,  -  & proton detection with 4  spectrometer 72 Search for  + in formation reaction ++ π-π- proton K + beam ΔP/P=1.4% 417 MeV/c Determine width from cross section ­  (E) = (  /4k 2 )  2 /{(E-m) 2 +  2 /4} ­  tot  26.4 x  mb/MeV Spin measurement ­ Decay angular distribution : 1 (1/2) or 1+3cos 2  (3/2)? P09-LOI, T. Nakano et al.

Reaction process : d(K +, p)    (have not been searched) Beam momentum : p K ~1 GeV/c ­ p K ~0.6 GeV/c: Magic mom ­ p K ~1 GeV/c ⇒ q  ~120 0° (p p ~1.1 GeV/c) ⇒ K1.1 beam line Detection of p: SKS ­ High resolution: ~3 MeV/c 2 d  /d  ~1  b/sr (Γ  ~ 1 MeV/c 2 ) [Nagahiro & Hosaka] Background process (1 GeV/c,  p ~0°) ­ K + p→K + p : 5 mb/sr ­ K + n→K 0 p : 1.5 mb/sr ⇒ Need surrounding detector : Sideway type To detect   →p K s 0 →p     73 Search for   via the (K +, p) reaction LOI, K. Tanida et al.

Reaction process : d(K +, p)    (have not been searched) Beam momentum : p K ~1 GeV/c ­ p K ~0.6 GeV/c: Magic mom ­ p K ~1 GeV/c ⇒ q  ~120 0° (p p ~1.1 GeV/c) ⇒ K1.1 beam line Detection of p: SKS ­ High resolution: ~3 MeV/c 2 d  /d  ~1  b/sr (Γ  ~ 1 MeV/c 2 ) [Nagahiro & Hosaka] Background process (1 GeV/c,  p ~0°) ­ K + p→K + p : 5 mb/sr ­ K + n→K 0 p : 1.5 mb/sr ⇒ Need surrounding detector : Sideway type To detect   →p K s 0 →p     74 Search for   via the (K +, p) reaction LOI, K. Tanida et al. K+K+ p p   Detector image

Other pentaquarks ­  5  (1862) : ddssu via K  n →   K p th = 2.4 GeV/c ­  0 c (3100) : uuddc via p p → p p  0 c p th = 12.3 GeV/c * Experiment at High Momentum (Separated) beam line ⇒ For future hadron programs, we need more new beam lines and multi-purpose detector. 75 In FUTURE… _ _

76 Thank you ! J-PARC Sunrise, last day of beam time 2010/11/16