Kees van Deemter (SSE, Jan '10) Vagueness Facilitates Search Kees van Deemter Computing Science University of Aberdeen.

Slides:



Advertisements
Similar presentations
Statistical vs Clinical or Practical Significance
Advertisements

How to Factor Quadratics of the Form
Costs and Benefits.
Kees van Deemter Matthew Stone Formal Issues in Natural Language Generation Lecture 4 Shieber 1993; van Deemter 2002.
Generation of Referring Expressions: Managing Structural Ambiguities I.H. KhanG. Ritchie K. van Deemter University of Aberdeen, UK.
Kees van Deemter (AC, Dec 09) Vagueness Facilitates Search Kees van Deemter Computing Science University of Aberdeen.
Generation of Referring Expressions: the State of the Art SELLC Summer School, Harbin 2010 Kees van Deemter Computing Science University of Aberdeen.
Charting the Potential of Description Logic for the Generation of Referring Expression SELLC, Guangzhou, Dec Yuan Ren, Kees van Deemter and Jeff.
Generation of Referring Expressions: the State of the Art SELLC Winter School, Guangzhou 2010 Kees van Deemter Computing Science University of Aberdeen.
Van Deemter, WORD, May 2010 Not Exactly Vagueness as Original Sin? Kees van Deemter University of Aberdeen.
CS CS1512 Foundations of Computing Science 2 Lecture 23 Probability and statistics (4) © J.
A small taste of inferential statistics
CS1512 Foundations of Computing Science 2 Week 3 (CSD week 32) Probability © J R W Hunter, 2006, K van Deemter 2007.
Vagueness: a problem for AI Kees van Deemter University of Aberdeen Scotland, UK.
Kees van Deemter, Dublin, Trinity College, May 2009 What utility can do for NLG: the case of vague language Kees van Deemter University of Aberdeen Scotland,
Chapter 3 Critically reviewing the literature
Chapter 7 Sampling and Sampling Distributions
Lecture 3 – February 17, 2003.
Inferential Statistics and t - tests
5-1 Chapter 5 Theory & Problems of Probability & Statistics Murray R. Spiegel Sampling Theory.
CS4018 Formal Models of Computation weeks Computability and Complexity Kees van Deemter (partly based on lecture notes by Dirk Nikodem)
Mathematics Grade Level Considerations for High School.
Presentation on Artificial Intelligence
Thinking Like an Economist
Reaching Agreements II. 2 What utility does a deal give an agent? Given encounter  T 1,T 2  in task domain  T,{1,2},c  We define the utility of a.
A set is a collection of objects A special kind of set Fuzzy Sets
Testing Hypotheses About Proportions
CHAPTER 14: Confidence Intervals: The Basics
1 Functions and Applications
NON - zero sum games.
Probability Unit 3.
On Status and Form of the Relevance Principle Anton Benz, ZAS Berlin Centre for General Linguistics, Typology and Universals Research.
Albert Gatt LIN3021 Formal Semantics Lecture 5. In this lecture Modification: How adjectives modify nouns The problem of vagueness Different types of.
Kees van Deemter (Guangzhou WS, Dec '10) Why Be Vague? Kees van Deemter Computing Science University of Aberdeen.
AI TECHNIQUES Fuzzy Logic (Fuzzy System). Fuzzy Logic : An Idea.
Algebra Problems… Solutions Algebra Problems… Solutions © 2007 Herbert I. Gross Set 4 By Herb I. Gross and Richard A. Medeiros next.
CUSTOMER NEEDS ELICITATION FOR PRODUCT CUSTOMIZATION Yue Wang Advisor: Prof. Tseng Advanced Manufacturing Institute Hong Kong University of Science and.
Report Assessment AE Semester Two
Marakas: Decision Support Systems, 2nd Edition © 2003, Prentice-Hall Chapter Chapter 4: Modeling Decision Processes Decision Support Systems in the.
The Simple Regression Model
No Free Lunch (NFL) Theorem Many slides are based on a presentation of Y.C. Ho Presentation by Kristian Nolde.
CHAPTER 19: Two-Sample Problems
ELEMENTARY NUMBER THEORY AND METHODS OF PROOF
Advanced Research Methodology
FUZZY LOGIC Babu Appat. OVERVIEW What is Fuzzy Logic? Where did it begin? Fuzzy Logic vs. Neural Networks Fuzzy Logic in Control Systems Fuzzy Logic in.
Psy B07 Chapter 1Slide 1 ANALYSIS OF VARIANCE. Psy B07 Chapter 1Slide 2 t-test refresher  In chapter 7 we talked about analyses that could be conducted.
Production.
© 2008 McGraw-Hill Higher Education The Statistical Imagination Chapter 9. Hypothesis Testing I: The Six Steps of Statistical Inference.
Theory testing Part of what differentiates science from non-science is the process of theory testing. When a theory has been articulated carefully, it.
Writing Analytically.
English Language Arts Level 7 #44 Ms. Walker
CORRELATION & REGRESSION
2-1 MGMG 522 : Session #2 Learning to Use Regression Analysis & The Classical Model (Ch. 3 & 4)
9/23/2015Slide 1 Published reports of research usually contain a section which describes key characteristics of the sample included in the study. The “key”
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 8: Estimating with Confidence Section 8.1 Confidence Intervals: The.
STAT 111 Introductory Statistics Lecture 9: Inference and Estimation June 2, 2004.
Chapter 2 Developmental Psychology A description of the general approach to behavior by developmental psychologists.
A COMMON FORMAT IN WRITING COMPRISES OF: Abstract Introduction Literature Review Material & Methodology Results Discussion Conclusion Acknowledgement References.
Chapter 22 Developer testing Peter J. Lane. Testing can be difficult for developers to follow  Testing’s goal runs counter to the goals of the other.
Copyright © 2012 Pearson Education. All rights reserved © 2010 Pearson Education Copyright © 2012 Pearson Education. All rights reserved. Chapter.
What is a paragraph? A paragraph is a group of sentences related to a particular topic, or central theme. Every paragraph has a key concept or main idea.
Chapter 4 The Classical Model Copyright © 2011 Pearson Addison-Wesley. All rights reserved. Slides by Niels-Hugo Blunch Washington and Lee University.
Chapter 6 - Basic Similarity Topics
Auctions serve the dual purpose of eliciting preferences and allocating resources between competing uses. A less fundamental but more practical reason.
Transient Unterdetermination and the Miracle Argument Paul Hoyningen-Huene Leibniz Universität Hannover Center for Philosophy and Ethics of Science (ZEWW)
CAS Managebac update CAS opportunity for someone with a scanner. Cambodia?
The expected value The value of a variable one would “expect” to get. It is also called the (mathematical) expectation, or the mean.
Cohesion : A SENSE OF FLOW Coherence : A SENSE OF THE WHOLE 王詳勛 & 張鴻翌.
Chapter 8: Estimating with Confidence
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 8: Estimating with Confidence Section 8.1 Confidence Intervals: The.
Presentation transcript:

Kees van Deemter (SSE, Jan '10) Vagueness Facilitates Search Kees van Deemter Computing Science University of Aberdeen

Kees van Deemter (SSE, Jan '10) Who I am: I... studied logic and philosophy of language –University of Amsterdam (PhD) –Stanford University (postdoc) worked for Philips Electronics on HCI and Language Technology have worked on Natural Language Generation since 1994 –University of Brighton (ITRI) –University of Aberdeen

Kees van Deemter (SSE, Jan '10) sources for this talk (KvD 2009a) What Game Theory Can Do For NLG: the case of vague language. In Proc. 12th Eur. Workshop on Natural Language Generation. (KvD2009b) Utility and Language Generation: The Case of Vagueness. J. Philosophical Logic 38/6. (Kvd2009c) Vagueness Facilitates Search, in Proc. of the Amsterdam Colloquium, Dec. 2009

Kees van Deemter (SSE, Jan '10) An expression is vague (V) iff it has borderline cases or degrees, e.g. large, small, fast, slow, many, few,... Not just words, e.g., –he came, he saw, he conquered –generic statements Common in all human languages 8 out of top 10 adjectives in BNC Dominant among the first words we learn

Kees van Deemter (SSE, Jan '10) Two big problems with vagueness 1.The semantic problem: How to model the meaning of V expressions? –Classical models: 2-valued –Partial models: 3-valued –Degree models: many-valued (e.g. Fuzzy Logic, Probabilistic Logic) No agreement how to answer this question (e.g., Keefe & Smith 1997)

Kees van Deemter (SSE, Jan '10) The pragmatic problem: 2.Why is language vague? Vague expressions seem a bit unclear Is it ever a good idea to be V? Suppose you built an electronic information provider; would you ever want it to offer you V information?

Kees van Deemter (SSE, Jan '10) Barton Lipman chapter in A.Rubinstein, Economics and Language (2000) working paper Why is Language Vague (2006) Lipman: Why have we tolerated an apparent worldwide several-thousand year efficiency loss? Thats todays topic

Kees van Deemter (SSE, Jan '10) The scenario of Lipman (2000, 2006) Airport scenario: I describe Mr X to you, to pick up X from the airport. All I know is Xs height; heights are uniformly distributed across people on [0,1]. If you identify X right away, you get payoff 1; if you dont then you get payoff -1

Kees van Deemter (SSE, Jan '10) What description would work best? State Xs height precisely If each of us knows Xs exact height then the probability of confusion is close to 0.

Kees van Deemter (SSE, Jan '10) What description would work best? State Xs height precisely If each of us knows Xs exact height then the probability of confusion is close to 0. If only one property is allowed: Say the tall person if height(X) > 1/2, else say the short person.

Kees van Deemter (SSE, Jan '10) What description would work best? State Xs height precisely If each of us knows Xs exact height then the probability of confusion is close to 0. If only one property is allowed: Say the tall person if height(X) > 1/2, else say the short person. No boundary cases, so this is not vague! Theorem: under standard game-theory assumptions (Crawford/Sobel), vague communication can never be optimal

Kees van Deemter (SSE, Jan '10) One type of answer to Lipman: conflict between S and H Aragones and Neeman (2000): ambiguity can add to speakers utility U S (politicians example)

Kees van Deemter (SSE, Jan '10) One type of answer to Lipman: conflict between S and H Aragones and Neeman (2000): ambiguity can add to speakers utility U S (politicians example) –De Jaegher (2003) argued that Aragones & Neemans solution wont work for vagueness –(KvD 2009a) adapted Aragones & Neeman for vagueness But what if language is used honestly? (i.e., U S =U H ) An illustrative application: Natural Language Generation

Kees van Deemter (SSE, Jan '10) Natural Language Generation (NLG) is an area of AI with many practical applications (e.g. Reiter and Dale 2000) An NLG program translates input data to linguistic output Essentially the problem of choosing the best linguistic Form for a given Content What does this choice depend on?

Kees van Deemter (SSE, Jan '10) Example: Roadgritting (Turner et al. 2009)

Kees van Deemter (SSE, Jan '10)

Example: Roadgritting (e.g.,Turner et al. 2009) Compare 1.Roads above 500m are icy 2.Roads in the Highlands are icy Decision-theoretic perspective: false positives, 2 false negatives false positives, 10 false negatives Suppose each false positive has utility of -0.1 each false negative has utility of -2

Kees van Deemter (SSE, Jan '10) Example: Roadgritting (e.g.,Turner et al. 2009) Suppose false positive has utility of -0.1 false negative has utility of -2 Then 1: 100 false pos, 2 false neg = -14 2: 10 false pos, 10 false neg = -21 So summary 1 is preferred over summary 2.

Kees van Deemter (SSE, Jan '10) Our question: When (if ever) is vague communication more useful than crisp communication? The question is not: Can vague communication be of some use? The question is: When is vague communication more useful than crisp communication? –Aside: Is vagueness useful at all?

Kees van Deemter (SSE, Jan '10) Gary Marcus: The haphazard construction of the human mind

Kees van Deemter (SSE, Jan '10) Two related questions 1.When/why should a person express information vaguely? 2.When/why should an NLG system express information vaguely?

Kees van Deemter (SSE, Jan '10) 1. Vicissitudes of measurement 11m 12m

Kees van Deemter (SSE, Jan '10) 1. Vicissitudes of measurement [a] Example: One house of 11m height and one house of 12m height 1.the house thats 12m tall needs to be demolished 2.the tall house needs to be demolished Comparison is easier and more reliable than measurement prefer utterance 2 –Measurable as likelihood of incorrect action

Kees van Deemter (SSE, Jan '10) 1. Vicissitudes of measurement [a] Example: One house of 11m height and one house of 12m height 1.the house thats 12m tall needs to be demolished 2.the tall house needs to be demolished Comparison is easier and more reliable than measurement prefer utterance 2 [But arguably, this utterance is not vague Its vagueness is merely local]

Kees van Deemter (SSE, Jan '10) Apparent vagueness is frequent the tall house the tallest house Physical exercise is good for young and old regardless of age Bad for bacteria, good for gums gums improve as a result of bacterial death Fast-flowing rivers are deep the faster the deeper (positive correlation between variables)

Kees van Deemter (SSE, Jan '10) 1. Vicissitudes of measurement [b] Numbers can suggest spurious precision Weather prediction: It will be degrees Celcius –Margin of error may be as much as 2 degrees It will be mild does not have this problem [But why not say: approx. 24 degrees ?]

Kees van Deemter (SSE, Jan '10) 2. Production/interpretation Effort Effort needs to be commensurate with utility. In many cases, more precision adds little benefit. E.g., Feasibility of an outing does not depend on whether its 20C or 30C. Mild takes fewer syllables than twenty three point seven five. –Time pressure affects speakers choices (e.g. Horton & Keysar 1996) –Vague words tend to be short (Krifka 2002) Context dependence adds to efficiency

Kees van Deemter (SSE, Jan '10) 3.Evaluation payoff Example: The doctor says –Utterance 1: Your blood pressure is 153/92. –Utterance 2: Your blood pressure is high. U2 offers less detail than U1 But U2 also offers evaluation of your condition (cf. Veltman 2000)

Kees van Deemter (SSE, Jan '10)

Example: The doctor says –Utterance 1: Your blood pressure is 153/92. –Utterance 2: Your blood pressure is high. U2 offers less detail than U1 But U2 also offers evaluation of your condition (cf. Veltman 2000) –A link with actions (cut down on salt, etc.) –Especially useful if metric is difficult –Measurable as likelihood of incorrect action

Kees van Deemter (SSE, Jan '10) Empirical evidence B.Zikmund-Fisher et al. (2007) E.Peters et al. (2009) Experiments showing that evaluative categories (i.e., labels) affect readers decisions

Kees van Deemter (SSE, Jan '10) Empirical evidence E.Peters et al. (2009): Hospital ratings based on numerical factors: (1) survival percentages (!), (2) percentages of recommended treatment, and (3) patient satisfaction Evaluation judgment: How attractive is this hospital to you?

Kees van Deemter (SSE, Jan '10) E.Peters et al. (2009) When numerical information was accompanied by labels (fair, good, excellent), a greater proportion of variance in evaluation judgments could be explained by the numeric factors –Without labels, the most important information (i.e., factor 1) was not used at all –Without labels, less numerate subjects were influenced by mood (I feel good/bad/happy/upset)

Kees van Deemter (SSE, Jan '10) Practical implications People are bad at interpreting numbers Mood etc. tend to take their place Evaluative categories (i.e., labels like good) matter

Kees van Deemter (SSE, Jan '10) [But why should labels be vague?] [Why does English not have a (brief) expression that says Your blood pressure is 150/90 and too high?] Compare You are obese means Your BMI is above 30 and this is dangerous.

Kees van Deemter (SSE, Jan '10) 4. Future contingencies Indecent Displays Control Act (1981) forbids public display of indecent matter –indecent at the time the law has been parameterised (Waismann 1968, Hart 1994, Lipman 2006) Obama/Volcker: Not too much risk should be concentrated into one bank (Jan. 2010) –opening bid in a policy war

Kees van Deemter (SSE, Jan '10) 5. Lack of a good metric –Mathematics: How difficult is a proof? (As the reader may easily verify) –Multidimensional measurements: Whats the size of a house? –Esthaetics: How beautiful is a sunset?

Kees van Deemter (SSE, Jan '10)

End of survey... on previous answers to the question why language is vague

Kees van Deemter (SSE, Jan '10) Remainder of this talk Explore tentative new answer: V can oil the wheels of communication Starting point: its almost inconceivable that all speakers arrive at exactly the same concepts

Kees van Deemter (SSE, Jan '10) Causes of semantic mismatches Perception varies per individual –Hilbert 1987 on colour terms: density of pigment on lens & retina; sensitivity of photo receptors Cultural issues. –Reiter et al on temporal expressions. Example: evening: Are the times of dinner and sunset relevant? R.Parikh (1994) recognised that mismatches exist …

Kees van Deemter (SSE, Jan '10) Parikh proposed utility-oriented perspective on meaning –Utility as reduction in search effort showed communication doesnt always break down when words are understood (slightly) differently by different speakers Consider the expression blue book

Kees van Deemter (SSE, Jan '10)

Blue books (Bob) Blue books (Ann) Ann: Bring the blue book on topology Bob: Search [[blue]] Bob, then, if necessary, all other books (only10% probability!) 675

Kees van Deemter (SSE, Jan '10) What Parikh did not do: show utility of V –Ann and Bob used crisp concepts! This talk: tall instead of blue. 2-dimensional [[tall 1 ]] [[tall 2 ]] or [[tall 2 ]] [[tall 1 ]] Focus on V

Kees van Deemter (SSE, Jan '10) The story of the stolen diamond A diamond has been stolen from the Emperor and (…) the thief must have been one of the Emperors 1000 eunuchs. A witness sees a suspicious character sneaking away. He tries to catch him but fails, getting fatally injured (...). The scoundrel escapes. (…) The witness reports The thief is tall, then gives up the ghost. How can the Emperor capitalize on these momentous last words? (book, to appear)

Kees van Deemter (SSE, Jan '10) The problem with dichotomies Suppose Emperor uses a dichotomy, e.g. Model A: [[tall]] Emperor = [[>180cm]] (e.g., 500 people) What if [[tall]] Witness = [[>175cm]]? If thief [[tall]] Witness - [[tall]] Emperor then Predicted search effort: 500+ ½(500)=750 Without witness utterance: ½(1000)=500 The witness utterance misled the Emperor 180cm thief 175cm A

Kees van Deemter (SSE, Jan '10) Model A uses a crisp dichotomy between [[tall]] A and [[ tall]] A Contrast this with a partial model B, which has a truth value gap [[?tall?]] B

Kees van Deemter (SSE, Jan '10) Model AModel B tall A tall B ?tall? B tall B 2-valued 3-valued 180cm 165cm

Kees van Deemter (SSE, Jan '10) How does the Emperor classify the thief? s(X) = def expected search time given model X Three types of situations Type 1: thief [[tall]] A = [[tall]] B In this case, s(A)=s(B)

Kees van Deemter (SSE, Jan '10) How does the emperor classify the thief? Type 2: thief [[?tall?]] B model A: search all of [[tall]] A in vain, then (on average) half of [[ tall]] A model B: search all of [[tall]] B in vain, then (on average) half of [[?tall?]] B B searches ½(card([[ tall]] B )) less! So, s(B)<s(A)

Kees van Deemter (SSE, Jan '10) How does the emperor classify the thief? Type 3: thief [[ tall]] B model A: search all of [[tall]] A in vain, then (on average) half of [[ tall]] A model B: search all of [[tall]] B in vain, then all of [[?tall?]] B then (on average) half of [[ tall]] B Now A searches ½(card([[?tall?]] B )) less. So, s(A)<s(B)

Kees van Deemter (SSE, Jan '10) Normally model B wins Type 2 is more probable than Type 3 Let S = xy ((x [[?tall?]] B & y [[ tall]] B ) p(tall(x)) > p(tall(y)) S is highly plausible! (Taller individuals are more likely to be called tall)

Kees van Deemter (SSE, Jan '10) Normally model B wins S : xy ((x [[?tall?]] B & y [[ tall]] B ) p(tall(x)) > p(tall(y) ) S implies xy ((x [[?tall?]] B & y [[ tall]] B ) p(thief(x)) > p(thief(y) ) It pays to search [[?tall?]] B before [[ tall]] B A priori, s(B) < s(A)

Kees van Deemter (SSE, Jan '10) Why does model B win? 3-valued models beat 2-valued models because they distinguish more finely Therefore, many-valued models should be even better! –All models that allow degrees or ranking (including e.g. Kennedy 2001)

Kees van Deemter (SSE, Jan '10) Consider degree model C v(tall(x)) [0,1] (e.g., Fuzzy or Probabilistic Logic) xy ((v(tall(x)) > v((tall(y)) p(tall(x)) > p(tall(y)) height(x) probability of x being called tall

Kees van Deemter (SSE, Jan '10) Consider degree model C Analogous to the Partial model C allows the Emperor to –rank the eunuchs, and –start searching the tallest ones, etc. Assuming >3 differences in height (i.e., more than 3 differences in v(tall(x)), this is even quicker than B: s(C) < s(B)

Kees van Deemter (SSE, Jan '10) An example of model C v(tall(a1)=v(tall(a2))=0.9 v(tall(b1)=v(tall(b2))=0.7 v(tall(c1)=v(tall(c2))=0.5 v(tall(d1)=v(tall(d2))=0.3 v(tall(e1)=v(tall(e2))=0.1 Search {a1,a2} first, then {b1,b2}, etc. (5 levels) This is quicker than a partial model (3 levels) which is quicker than a classical model (2 levels)

Kees van Deemter (SSE, Jan '10) This analysis suggests …

Kees van Deemter (SSE, Jan '10) This analysis suggests …... that it helps the Emperor to understand tall as having borderline cases or degrees But, borderline cases and degrees are the hallmark of V It appears to follow that V has benefits for search

Kees van Deemter (SSE, Jan '10) This analysis also suggests …... that degree models offer a better understanding of V than partial models –Compare the first big problem with V Radical interpretation: V concepts dont serve to narrow down search space, but to suggest an ordering of it

Kees van Deemter (SSE, Jan '10) Objections …

Kees van Deemter (SSE, Jan '10) Objections … Objection 1: Smart search would have been equally possible based on a dichotomous (i.e., classical) model.

Kees van Deemter (SSE, Jan '10) Objections … Objection 1: Smart search would have been equally possible based on a dichotomous (i.e., classical) model. The idea: You can use a classical model, yet understand that other speakers use other classical models. Start searching individuals who are tall on most models.

Kees van Deemter (SSE, Jan '10) Objections … Objection 1: Smart search would have been equally possible based on a dichotomous (i.e., classical) model. The idea: you can use a classical model yet understand that other speakers use other classical models. Start searching individuals who are tall on most models Response: Reasoning about different classical models is not a classical logic but a Partial Logic with supervaluations. Presupposes that tall is understood as vague.

Kees van Deemter (SSE, Jan '10) Objections … Objection 2: Truth value gaps (or degrees) do not imply vagueness.

Kees van Deemter (SSE, Jan '10) Objections … Objection 2: Truth value gaps (or degrees) do not imply vagueness. The idea: Truth value gaps that are crisp fail to model V. (Similar for degrees.) Higher-order V needs to be modelled.

Kees van Deemter (SSE, Jan '10) Objections … Objection 2: A truth value gap (or degrees) does not imply vagueness. The idea: Truth value gaps that are crisp fail to model V. (Similar for degrees.) Higher-order V needs to be modelled. Response: few formal accounts of V pass this test

Kees van Deemter (SSE, Jan '10) Objections … Objection 3: Why was the witness not more precise?

Kees van Deemter (SSE, Jan '10) Objections … Objection 3: Why was the witness not more precise? The idea: Witness should have said the thief was 185cm tall, giving an estimate

Kees van Deemter (SSE, Jan '10) Objections … Objection 3: Why was the witness not more precise? The idea: Witness should have said the thief was 185cm tall, giving an estimate Response: (1) Why are such estimates vague (approximately 185cm) rather than crisp (185cm =/- 0.5cm)? (2) This can be answered along the lines proposed.

Kees van Deemter (SSE, Jan '10) Objections … Objection 4: This contradicts Lipmans theorem

Kees van Deemter (SSE, Jan '10) Objections … Objection 4: This contradicts Lipmans theorem The idea: Lipman (2006) proved that every V predicate can be replaced by a crisp one that has a utility at least as high.

Kees van Deemter (SSE, Jan '10) Objections … Objection 4: This contradicts Lipmans theorem The idea: Lipman (2006) proved that every V predicate can be replaced by a crisp one that has a utility at least as high. Response: Lipmans assumptions dont apply: (1) Theorem models V through probability distribution. (2) Theorem assumes that hearer knows what crisp model the speaker uses (e.g. >185cm).

Kees van Deemter (SSE, Jan '10) Lipmans theorem assumes that hearer knows what crisp model the speaker uses Our starting point: in continuous domains, perfect alignment between speakers/hearers would be a miracle (pace epistemicist approaches to V !)

Kees van Deemter (SSE, Jan '10) Summing up Why information reduction is useful is well understood Why this should involve borderline cases is less clear. (Lipmans question) Several tentative answers have been published. (Survey) A new answer, based on mismatches in perception and benefits for search –complements earlier answers

Kees van Deemter (SSE, Jan '10) Not Exactly: in Praise of Vagueness. Oxford University Press, Jan Part 1: Vagueness in science and daily life. Part 2: Linguistic and logical models of vagueness. Part 3: Working models of V in Artificial Intelligence.

Kees van Deemter (SSE, Jan '10) Background on the book: Acknowledgments relating to this talk: Ehud Reiter, Advaith Siddharthan

Kees van Deemter (SSE, Jan '10) Appendix Extra slides

Kees van Deemter (SSE, Jan '10) Normally model B wins Let S abbreviate: p(t [[?tall?]] B | tall(t)) > p(t [[ tall]] B | tall(t)) For example, S is plausible if card([[?tall?]] B )=card([[ tall]] B )

Kees van Deemter (SSE, Jan '10) Example (draft) Let [[tall]]={a,b,c,d} p(thief [[tall]]) = 1/2 [[?tall]]={e,f} p(thief [[?tall?]]) = 1/4 [[ tall]]={g,h,i,j} p(thief [[ tall]]) = 1/4 then s( )= 1/2*(2)+1/4*(4+1)+1/4*(6+2)= 4.25 s( )= 1/2*(2)+1/4*(4+2)+1/4*(8+1)= 4.75 s( )= 1/4*(2)+1/4*(4+1)+1/2*(6+2)= 5.75

Kees van Deemter (SSE, Jan '10) Consider degree model C In C: v(tall(x)) [0,1] (e.g., Fuzzy or Probabilistic Logic) S = ab: a>b p(tall(x) | v(tall(x)=a)) > p(tall(x) | v(tall(x)=b)) height(x) probability of x being called tall

Kees van Deemter (SSE, Jan '10) rich=earn more than 10 6 EUR (1) xy: ( x South & y North p(rich(x)) > p(rich(y)) ) (2) x: (rich(x) oil(x)) Therefore (3) xy: ( x South & y North p(oil(x)) > p(oil(y)) )