18/September/2014 日本物理学会2014年秋季大会@佐賀大学 東大ICEPP,東大理 A, PSI B 内山雄祐 , 家城佳 B, 岩本敏幸,大谷航,小川真治 A, 金子大輔 A, 澤田龍,柴田直哉 A, 中浦正太 A, 西村美紀 A, 森俊則,吉田昂平 A, Elisabetta Baracchini.

Slides:



Advertisements
Similar presentations
MEG 実験 液体キセノンカロリメータ におけるエネルギー分解能の追究 東大素粒子センター 金子大輔 他 MEG コラボレーション.
Advertisements

03 Aug NP041 KOPIO Experiment Measurement of K L    Hideki Morii (Kyoto Univ.) for the KOPIO collaborations Contents Physics Motivation.
Pion yield studies for proton drive beams of 2-8 GeV kinetic energy for stopped muon and low-energy muon decay experiments Sergei Striganov Fermilab Workshop.
Introduction to Hadronic Final State Reconstruction in Collider Experiments Introduction to Hadronic Final State Reconstruction in Collider Experiments.
Introduction to Hadronic Final State Reconstruction in Collider Experiments Introduction to Hadronic Final State Reconstruction in Collider Experiments.
Striplet option of Super Belle Silicon Vertex Detector Talk at Joint Super B factory workshop, Honolulu 20 April 2005 T.Tsuboyama.
Dec 2005Jean-Sébastien GraulichSlide 1 Improving MuCal Design o Why we need an improved design o Improvement Principle o Quick Simulation, Analysis & Results.
MEG 実験 陽電子スペクトロメータの 性能と今後の展望 Yuki Fujii On behalf of the MEG collaboration JPS Hirosaki University 17 th Sep /9/17 日本物理学会@弘前大学 1.
MEG II 実験液体キセノンガンマ線検出器 における再構成法の開発 Development of the event reconstruction method for MEG II liquid xenon gamma-ray detector 小川真治、 他 MEG II
HPS Test Run Setup Takashi Maruyama SLAC Heavy Photon Search Collaboration Meeting Thomas Jefferson National Accelerator Facility, May 26-27,
Mar Toshiyuki Iwamoto (ICEPP) JPS 2010 Spring meeting, Okayama University1 MEG 実験による   e  探索 Run2009 東京大学素粒子物理国際研究センター 岩本敏幸 他 MEG コラボレーション.
Ivan Logashenko for Mu2e Collaboration
 A GEANT4-based simulation was performed of the production target, solenoid, selection channel, and spectrometer.  The acceptance was found to be 8.3x10.
ハイパー核ガンマ線分光用 磁気スペクトロメータ -SksMinus- 東北大学 大学院理学研究科 白鳥昂太郎 ATAMI.
SHMS Optics and Background Studies Tanja Horn Hall C Summer Meeting 5 August 2008.
2 1/March/2015 日本物理学会大70回年次大会@早稲田大学 東大ICEPP 内山雄祐 他 MEG II collaboration.
25/07/2002G.Unal, ICHEP02 Amsterdam1 Final measurement of  ’/  by NA48 Direct CP violation in neutral kaon decays History of the  ’/  measurement by.
MEG positron spectrometer Oleg Kiselev, PSI on behalf of MEG collaboration.
SiPM を用いたシンチレーションカウンターによる 細分化ポジトロン時間測定器のビーム試験結果 西村美紀 ( 東大 ) 内山雄祐(素セ)、大谷航(素セ)、 M. de Gerone ( Genova Univ. )、 Flavio Gatti(Genova Univ.) 、調翔平(九 大) 他 MEGコラボレーション.
MEG 実験におけるミュー粒子放射崩壊の 測定と利用 日本物理学会第67回年次大会 ICEPP, the University of Tokyo 内山 雄祐.
MEG II 実験のための 陽電子タイミングカウンターの開発 PSI でのハイレートビーム試験 Development of Positron Timing Counter with SiPM for MEG-II Experiment Beam Test Result in the high rate.
Status report on the Asian Solid State Tracking R&D March 31, 2003 M. Iwasaki University of Tokyo.
Design and development of micro-strip stacked module prototypes for tracking at S-LHC Motivations Tracking detectors at future hadron colliders will operate.
MEG II 実験のための 陽電子タイミングカウンター実機建設 Construction of Positron Timing Counter for MEG II experiment 西村美紀(東大) 他 MEGIIコラボレーション 日本物理学会 2015年 秋季大会 大阪市立大学(杉本キャンパス)
MEG Run 2008 液体キセノンガンマ線検出器 東京大学 素粒子物理国際研究セン ター 西村 康宏、 他 MEG コラボレー ション 2008 年秋季物理学会@山形大学小白川キャンパス.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
DØ Central Tracker Replaced with New Scintillating Fiber Tracker and Silicon Vertex Detector The DØ Central Detector Upgrade The DØ Detector is a 5000.
Jonathan BouchetBerkeley School on Collective Dynamics 1 Performance of the Silicon Strip Detector of the STAR Experiment Jonathan Bouchet Subatech STAR.
COMET and DeeMe. Mu-e conversion search at J-PARC COMET Target sensitivity 10 C.L. using aluminum target – SINDRUM II 7x – MEG 2.4x
First CMS Results with LHC Beam
D 0 reconstruction: 15 AGeV – 25 AGeV – 35 AGeV M.Deveaux, C.Dritsa, F.Rami IPHC Strasbourg / GSI Darmstadt Outline Motivation Simulation Tools Results.
CP violation in B decays: prospects for LHCb Werner Ruckstuhl, NIKHEF, 3 July 1998.
IHEP/Protvino for FP420 R&D Collaboration 1 IHEP/Protvino Group: Igor Azhgirey Igor Bayshev Igor Kurochkin + one post-graduate student Tools:
LCWS11 – Tracking Performance at CLIC_ILD/SiD Michael Hauschild - CERN, 27-Sep-2011, page 1 Tracking Performance in CLIC_ILD and CLIC_SiD e + e –  H +
Luminosity Monitor Design MICE Collaboration Meeting 31 May 2009 Paul Soler.
Mu to e Meeting BNL, June 2006 Extinction requirement relaxation (Kevin O’Sullivan) Stopping Target Geometry (Cenap Ozben, David Morse) Yannis Semertzidis.
Electron Spectrometer: Status July 14 Simon Jolly, Lawrence Deacon 1 st July 2014.
J-PARC でのシグマ陽子 散乱実験の提案 Koji Miwa Tohoku Univ.. Contents Physics Motivation of YN scattering Understanding Baryon-Baryon interaction SU(3) framework Nature.
1 Experimental Particle Physics PHYS6011 Fergus Wilson, RAL 1.Introduction & Accelerators 2.Particle Interactions and Detectors (2) 3.Collider Experiments.
May 26-27, 2005Tadashi Nomura (Kyoto U), KRare05 at Frascati, Italy1 KOPIO Beam Catcher Tadashi Nomura (Kyoto U.) Contents –What is Beam Catcher? –Concept.
P.F.Ermolov SVD-2 status and experimental program VHMP 16 April 2005 SVD-2 status and experimental program 1.SVD history 2.SVD-2 setup 3.Experiment characteristics.
MEG 実験 2009 液体キセノン検出器の性能 II 西村康宏, 他 MEG コラボレーション 東京大学素粒子物理国際研究セン ター 第 65 回年次大会 岡山大学.
SPHENIX Mid-rapidity extensions: Additional Tracking system and pre-shower Y. Akiba (RIKEN/RBRC) sPHENIX workfest July 29,
Introduction to Hadronic Final State Reconstruction in Collider Experiments Introduction to Hadronic Final State Reconstruction in Collider Experiments.
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
Development of UV-sensitive MPPC for upgrade of liquid xenon detector in MEG experiment Daisuke Kaneko, on behalf of the MEG Collaboration µ γ Liquid xenon.
Development of 100 MHz trackers
小川真治、 他MEG 第72回年次大会 MEG II 実験液体キセノンガンマ線検出器における取得データサイズ削減手法の開発 Development of the data size reduction method for MEG II liquid.
Comparison of GAMMA-400 and Fermi-LAT telescopes
Silicon Pixel Detector for the PHENIX experiment at the BNL RHIC
Cecilia Voena INFN Roma on behalf of the MEG collaboration
Liquid Xenon Detector for the MEG Experiment
大強度
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Tadashi Nomura (Kyoto U), KRare05 at Frascati, Italy
Upgrade of LXe gamma-ray detector in MEG experiment
Experimental Particle Physics
Upgrade of LXe gamma-ray detector in MEG experiment
Experimental Particle Physics PHYS6011 Putting it all together Lecture 4 6th May 2009 Fergus Wilson, RAL.
GEANT Simulations and Track Reconstruction
Experimental Particle Physics PHYS6011 Putting it all together Lecture 4 28th April 2008 Fergus Wilson. RAL.
Backgrounds using v7 Mask in 9 Si Layers at a Muon Higgs Factory
Background rejection in P326 (NA48/3)
Experimental Particle Physics PHYS6011 Joel Goldstein, RAL
Experimental Particle Physics
Status of CCD Vertex Detector R&D for GLC
Decay Angular Measurement in the MEG Experiment
New Results from the MEG Experiment
Presentation transcript:

18/September/2014 日本物理学会2014年秋季大会@佐賀大学 東大ICEPP,東大理 A, PSI B 内山雄祐 , 家城佳 B, 岩本敏幸,大谷航,小川真治 A, 金子大輔 A, 澤田龍,柴田直哉 A, 中浦正太 A, 西村美紀 A, 森俊則,吉田昂平 A, Elisabetta Baracchini

1.A project to make a new muon beamline is progressing at PSI to provide 10–100 times higher continuous muon beam. 2.Study possibilities of carrying out a new μ → eγ experiment with a sensitivity of , an order of magnitude better than MEG-II. 3.Consider converting photon spectrometer for the gamma-ray detector. JPS2014Autumn Yusuke UCHIYAMA/ The University of Tokyo 2

JPS2014Autumn Yusuke UCHIYAMA/ The University of Tokyo 3 PSI Paul Scherrer Institut To UCN source  production target World’s most powerful proton beam to targets: 590 MeV x 2.4 mA = 1.4 MW World’s highest intensity  &  beams  E5 Proton accelerator complex

Next generation H igh i ntensity M uon B eam project  Extract muon produced at the target of spallation neutron (SINQ) – High intensity proton (70% of primary proton stop here) – Wide pion energy-range (<150MeV) – Large production volume (9000 times larger than E-target at PiE5)  O(10 10 ) surface μ + /s (estimate)  Feasibility study in 2013 – 2014  Operation from ~2019 (?) JPS2014Autumn Yusuke UCHIYAMA/ The University of Tokyo 4 proton muon Protons Surface muons Pb+Zy+D 2 O Al 25 cm Keep PSI as the intensity frontier 70% to SINQ Only 12% stopped

MEG completed data taking – Set limit B (μ→eγ) < 5.7×10 – Final result with ~40% improved sensitivity coming soon. MEG II construction has been started – Aim at x10 better sensitivity (< 5x ) – By exploiting full beam intensity available today ~10 8 μ + /s at the PSI πE5 – By upgrading the MEG detector Keep experimental concept In short (~5 years), at low cost JPS2014Autumn Yusuke UCHIYAMA/ The University of Tokyo 5

6 Project X JPS2014Autumn Yusuke UCHIYAMA/ The University of Tokyo Belle II 7–8 TeV 13–14 TeV 14 TeV HL- LHC MEG Mu3e phase II DeeMe COMET phase I Now MEG II Mu3e phase I COMET phaseII new  → e  ? PSI/HiMB FNAL/PIP II Mu2e PRISM?

JPS2014Autumn Yusuke UCHIYAMA/ The University of Tokyo MeV ( = M μ /2) Two-body decay  Clear signature  Easy to gain acceptance (solid angle & momentum) Neutral particle (γ)  Difficult in high precision & high efficiency detection  No (or very little) info of direction  Not able to test vertex matching Physics BG Time coincident But highly suppressed at signal region by energies & angle Accidental BG Time, direction & energies are random But dangerous at high intensity Dominant in MEG or 1 100

JPS2014Autumn Yusuke UCHIYAMA/ The University of Tokyo 8 |t e  |<0.244ns; cos  e  < <E  <55.5MeV; 52.4<E e <55MeV 2009 – 2011 data No excess of signal-like events observed

JPS2014Autumn Yusuke UCHIYAMA/ The University of Tokyo 9 x z y x θ φ μ + beam Uniform B-field Gradient B-field 1.3 T 0.5 T 1.LXe γ-ray detector 2.Gradient field e + spectrometer

1.Liquid xenon γ detector ⃝ High eff. γ detection (ε > 50%) ⃝ Total absorption w/o any dead material, with good uniformity and high light yield (σ E ~ 1%) ⃝ High time resolution (σ t ~ 60 ps) ╳ Difficult operation, need massive cryostat ╳ Weak to pileup due to single volume ╳ No power of direction reconstruction 2.Gradient B-field for efficient e + measurement 3.Relatively small solid angle (geometrical acceptance) ~ 10% JPS2014Autumn Yusuke UCHIYAMA/ The University of Tokyo 10

To improve x10 (a few dozens?) sensitivity, we need at least x10 statistics. How to gain? Then, we have to reduce increased BG. – How much do we have to reduce? JPS2014Autumn Yusuke UCHIYAMA/ The University of Tokyo 11 Higher beam intensity × 3, 5, 10, 100 ? Increase acceptance × 3, 5, 10 ? MEG II 7×10 7   /s MEG II ~ 5%

JPS2014Autumn Yusuke UCHIYAMA/ The University of Tokyo 12 ε x 1ε x 3ε x 5ε x 10 SBSBSBSB Rμ x 1MEG II Rμ x Rμ x Rμ x Rμ x *Assuming same running time as MEG II

JPS2014Autumn Yusuke UCHIYAMA/ The University of Tokyo 13

Measure e + e - pair from incident photon converted in conversion layer. Previous experiment, MEGA, used this type detector. Merits – Good position resolution – Direction of γ reconstructed – Strong against pileup – Low cost (?) – Better energy resolution possible but trade off b/w efficiency Challenge: How to gain efficiency – ~a few % – Complicated pattern recognition and tracking JPS2014Autumn Yusuke UCHIYAMA/ The University of Tokyo X0

There are a few preceding studies of new μ → eγ experiments using the converting photon spectrometer. – Mainly in US snowmass process for ProjectX – They conclude that it is possible to go to O( ) However, there are several points suspicious – Unreasonable assumptions, – Not proper (or lack) simulation JPS2014Autumn Yusuke UCHIYAMA/ The University of Tokyo 15 arXiv & Snowmass 2013 report A 0.56 mm Pb (0.1 X0) conversion layer. Si strip for detector multi layers of 0.5 mm W (0.14 X0) conversion layer. ~100 layers of drift chamber

e+ e- Perform simple MC study – shoot 52.8 MeV γ perpendicular to the Pb plate – Calculate out-coming e+e- energies Need to track particle as low as <10 MeV to get good efficiency JPS2014Autumn Yusuke UCHIYAMA/ The University of Tokyo 16 Energy loss inside the converter (dominant) was not simulated! arXiv σ Eγ = 200 keV 560 um Pb 1%1% 100 um Pb 0.75 % 52.8 MeV ± 200keV * 1.64

Energy reso. is limited by energy loss in converter – Energy loss clearly correlates with path length inside the converter – However, reconstruct the depth of conversion seems difficult As thin as 100 um necessary. Efficiency is <0.75% per layer. Able to solve the dilemma by sub-layers – Fill the gap with active device, or – Just gap – can disentangle sub layer JPS2014Autumn Yusuke UCHIYAMA/ The University of Tokyo 17 Si Double-layer converter Mille-feuille converter Si SciFi

γ direction can be reconstructed from momenta of the pair Resolution: ~50 mrad (<10 mrad in ProjectX study) – Limited by multiple scattering in the converter – Similar to MEGA’s resolution (250 um Pb) JPS2014Autumn Yusuke UCHIYAMA/ The University of Tokyo 18 Δθ (rad) 200 um Pb e+e+ γ Power of accidental BG discrimination. Compensate increased beam intensity.

In 1.5 T uniform B-field 10 super layers – first layer from r=26 cm – at 5 cm radial distance A super layer consists of – two 100 um Pb converters – two Si pixel layers put both outside the conversion double layer Target – 100 um plastic sheet – slant angle of 10° to spread vertex distribution  ~15% conversion eff. assuming 50% rec. eff. ⇒ 7–8% eff.  Need active area of 160 m 2 CMS level! ⇒ Increase B-field, increase sub-layers JPS2014Autumn Yusuke UCHIYAMA/ The University of Tokyo 19

Si pixel tracker with – Large area – High time resolution (O(100 ps)) – Ultra thin (~50 um) If build e + side as well, <50 um important JPS2014Autumn Yusuke UCHIYAMA/ The University of Tokyo 20 (High voltage monolithic active pixel sensors) I. Peric et.al. NIMA 582 (2007) 876 HV-MAPS for Mu3e 50 um thick High rate Giga-tracker for NA62 about in use No available device today Need device development Hybrid pixel σt = 200 ps 200 um thick

10 times larger statistics achievable by – 5 times higher intensity beam – twice higher signal acceptance with multi-layer converting photon spectrometer – multi layers to gain efficiency – sub layers for good resolution retaining efficiency Suppress increased BG by – Vertex matching (compensate increased beam rate) – Better γ energy resolution (3 times better)  However, realization seems really challenging – Need further detailed studies – Need technological development – Need more or completely different idea JPS2014Autumn Yusuke UCHIYAMA/ The University of Tokyo 21 Toward μ → eγ O( ) (compared to MEG II)

Reconstruction (pattern recognition & tracking) Event overlap BG study e + side (no study yet) JPS2014Autumn Yusuke UCHIYAMA/ The University of Tokyo 22

Keep 3 keys of MEG 1.World’s most intensity DC μ PSI 2.Innovative liquid xenon γ-ray detector 3.Gradient B-field e + -spectrometer 23 JPS2014Autumn Yusuke UCHIYAMA/ The University of Tokyo

Ultra thin device necessary to suppress multiple scattering. HV-MAPS – Thinned down to 30–50 μm – Amp, digitization on chip – Fast readout: <50 ns timestamp JPS2014Autumn Yusuke UCHIYAMA/ The University of Tokyo 50 μm thick silicon wafer Mock-up 2013:Extensive beam test campaign <1‰ X 0 per layer (High voltage monolithic active pixel sensors) I. Peric et.al. NIMA 582 (2007)

Geometrical acceptance ~70% JPS2014Autumn Yusuke UCHIYAMA/ The University of Tokyo cm ~15cm * not to scale HV-MAPS Ultra-thin Si device SciFi σ t ~ a few 100 psec Cone-shape target disperse vertices into large surface Tackle with new technologies

JPS2014Autumn Yusuke UCHIYAMA/ The University of Tokyo 26