Analysis strategy of high multiplicity data Toshiyuki Gogami 24/Feb/2011.

Slides:



Advertisements
Similar presentations
Tracking for high multiplicity event (E05-115) & E GEANT4 simulation 14/Dec/2011 School of science, Tohoku University Toshiyuki Gogami ( 後神 利志 )
Advertisements

The performance of Strip-Fiber EM Calorimeter response uniformity, spatial resolution The 7th ACFA Workshop on Physics and Detector at Future Linear Collider.
HES-HKS & KaoS meeting Toshiyuki Gogami 18Dec2013.
Spectroscopic Investigation of  Hypernuclei in the Wide Mass Region by the (e,e’K + ) Reaction Chunhua Chen Hampton University Nov.6,2010/DNP.
SKS Minus Detectors in detail Tohoku Univ. K.Shirotori.
03 Aug NP041 KOPIO Experiment Measurement of K L    Hideki Morii (Kyoto Univ.) for the KOPIO collaborations Contents Physics Motivation.
Lambda hypernuclear spectroscopy up to medium heavy mass number at JLab Hall-C Graduate school of Science, Tohoku Univ. Toshiyuki Gogami.
Zhihong Ye Hampton University Feb. 16 th 2010, APS Meeting, Washington DC Data Analysis Strategy to Obtain High Precision Missing Mass Spectra For E
Spectroscopic Investigation of P-shell Λ hypernuclei by the (e,e'K + ) Reaction - Analysis Update of the Jlab Experiment E Chunhua Chen Hampton.
HLab meeting 10/14/08 K. Shirotori. Contents SksMinus status –SKS magnet trouble –Magnetic field study.
Nov.29,2011/HU group meeting Spectroscopic Investigation of P-shell Λ hypernuclei by (e,e'K + ) - Analysis Updated Status - Chunhua Chen Hampton Universithy.
HYP03 Future Hypernuclear Program at Jlab Hall C Satoshi N. Nakamura Tohoku University 18 th Oct 2003, JLab.
Report of the NTPC Test Experiment in 2007Sep and Others Yohei Nakatsugawa.
Medium heavy Λ hyper nuclear spectroscopic experiment by the (e,e’K + ) reaction Graduate school of science, Tohoku University Toshiyuki Gogami for HES-HKS.
ハイパー核ガンマ線分光用 磁気スペクトロメータ -SksMinus- 東北大学 大学院理学研究科 白鳥昂太郎 ATAMI.
GlueX Particle Identification Ryan Mitchell Indiana University Detector Review, October 2004.
Lambda hypernuclear spectroscopy at JLab Hall-C Graduate School of Science, Tohoku University Toshiyuki Gogami for the HES-HKS collaboration 1.Introduction.
HLAB meeting 25 Jan 2011 T.Gogami E experimental setup in JLab Hall C (2009)
HKS Analysis Status Report HKS Analysis Status Report Liguang Tang (Hampton/JLAB) Hall C User Meeting, Jan. 15, 2011 HKS has data taken in 2005 (E01-011)
The GlueX Detector 5/29/091CIPANP The GlueX Detector -- David Lawrence (JLab) David Lawrence (JLab) Electron beam accelerator continuous-wave (1497MHz,
Tracking at LHCb Introduction: Tracking Performance at LHCb Kalman Filter Technique Speed Optimization Status & Plans.
GEANT Study of Electron ID and  0 Rejection for Containerized detectors Compare detectors in shipping containers to idealized continuous detector with.
Status of TPC experiment ---- Online & Offline M. Niiyama H. Fujimura D.S. Ahn W.C. Chang.
1 Hypernuclear spectroscopy up to medium mass region through the (e,e’K + ) reaction in JLab Mizuki Sumihama For HKS collaboration Department of Physics.
Jin Huang M.I.T. Hall A Analysis Workshop Dec 14, JLab.
TOF for New-TPC experiment 1.Time-of-Flight 2.Missing mass of single-K +, proton 3.New-DC Mizuki Sumihama May, 2 nd, 2008.
JLab hypernuclear collaboration meeting / JSPS Core to Core Seminar Study of elementary process in Hall-C p(γ*,eK + )Λ/Σ 0 9May2012 – 11May2012 Department.
E Analysis update Adjust of the Splitter-HKS Side Yuncheng Han May 09, 2012 Hampton University JLab hypernuclear collaboration meeting.
Hypernuclei Production Experiment E05115 at Jefferson Laboratory by the (e,e’K + ) Reaction Chunhua Chen March 31, 2012  Introduction  Experimental Setup.
Mitglied der Helmholtz-Gemeinschaft Calibration of the COSY-TOF STT & pp Elastic Analysis Sedigheh Jowzaee IKP Group Talk 11 July 2013.
Latifa Elouadrhiri Jefferson Lab Hall B 12 GeV Upgrade Drift Chamber Review Jefferson Lab March 6- 8, 2007 CLAS12 Drift Chambers Simulation and Event Reconstruction.
1 Performance of a Magnetised Scintillating Detector for a Neutrino Factory Scoping Study Meeting Rutherford Appleton Lab Tuesday 25 th April 2006 M. Ellis.
KEK beam test in May 2005 Makoto Yoshida Osaka Univ. MICE Frascati June 27 th, 2005.
SksMinus status Hyperball collaboration meeting 2009/3/11 K. Shirotori.
JLab hypernuclear collaboration meeting / JSPS Core to Core Seminar Analysis Status of Heavy targets data of HES-HKS 9May2012 – 11May2012 Department of.
HES-HKS analysis meeting Toshi Gogami 5Mar2014. Contents  Cross section & Λ binding energy 12 C(e,e’K + ) 12 Λ B 10 B(e,e’K + ) 10 Λ Be 7 Li(e,e’K +
Impact parameter resolutions for ILC detector Tomoaki Fujikawa (Tohoku university) ACFA Workshop in Taipei Nov
A search for strange tribaryonic states in the reaction Heejoong Yim Seoul National University For KEK-PS E549 collaboration.
JLab における (e,e'K + ) 反応を用い た 精密ラムダハイパー核分光実験 東北大学理学研究科 後神 利志 Toshiyuki Gogami Strangeness 2010 at KEK JLab Hall-C.
HES HKS collaboration meeting 3/11/2010 T.Gogami.
Λ hypernuclear spectroscopic experiment via (e,e’K + ) at JLab Graduate school of science, Tohoku Univ. Toshiyuki Gogami JLab Hall-C in May 2009.
Analysis strategy of high multiplicity data Toshiyuki Gogami 24/Feb/2011.
Magnetized hadronic calorimeter and muon veto for the K +   +  experiment L. DiLella, May 25, 2004 Purpose:  Provide pion – muon separation (muon veto)
HLAB meeting paper 2011/1/18 T.Gogami CLAS ( CEBAF Large Acceptance Spectrometer ) Clam shell is open.
HES HKS meeting 24 Sep 2010 Toshiyuki Gogami 9/4/2010 in Prague, Czech.
HES-HKS & KaoS meeting 15/July/2011 T.Gogami Wiesbaden のお風呂はこんな感じでし た.
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
HES-HKS & KaoS meeting Toshi Gogami 11/July/2012.
Fiber target simulation for S-2S experiment Toshiyuki Gogami 2015/10/15.
Christian Lippmann (ALICE TRD), DPG-Tagung Köln Position Resolution, Electron Identification and Transition Radiation Spectra with Prototypes.
1 Performance of a Magnetised Scintillating Detector for a Neutrino Factory Scoping Study Meeting U.C. Irvine Monday 21 st August 2006 M. Ellis & A. Bross.
A Highly Selective Dilepton Trigger System Based on Ring Recognition Alberica Toia II Physikalisches Institut Justus-Liebig-Universität Gießen, Germany.
JLab における高品質電子ビームを用い た ラムダハイパー核分光実験の解析状況 14aSC-4 Graduate school of science, Tohoku University Toshiyuki Gogami for the HES-HKS collaborations JLab Hall-C.
Status report - Tracking code - T.Gogami 9/30/2010.
Lambda hypernuclear spectroscopy up to medium heavy mass number at JLab Hall-C Graduate School of Science, Tohoku University Toshiyuki Gogami for the HES-HKS.
HLAB meeting status report Toshiyuki Gogami 3Sep2013.
HES HKS meeting 1 Nov 2010 T.Gogami E experimental setup in JLab Hall C (2009)
HES-HKS & KaoS meeting 21/Oct/2011 Toshi Gogami 11/Mar/2010, E End-Run Party at Kappo Nara, Newport News, US.
7/13/2010 D1 T.Gogami JLab Hall-C. 1. about E Event display track – detectors track – chamber wire coordinate.
HKS collaboration 2008/5/16 Wedding Party 2008/5/10.
Track finding with g-2 silicon tracker 2 nd Workshop on Muon g-2 and EDM in the LHC Era May 5, 2012 Kazuki Ueno (RIKEN)
Quark Matter 2002, July 18-24, Nantes, France Dimuon Production from Au-Au Collisions at Ming Xiong Liu Los Alamos National Laboratory (for the PHENIX.
電子線を用いた中重ラムダハイパー核分光実験の為 の 高多重度用飛跡再現コードの開発 Department of Science, Tohoku University Toshiyuki Gogami ( 後神 利志 ) JPS 2011 autumn meeting, T.Gogami1 JLab E
Seoul National University On behalf of J-PARC E18 Collaboration
Tracking(1) Kp2 decay-in-flight BG simulation
Tracking results from Au+Au test Beam
Preparation of the CLAS12 First Experiment Status and Time-Line
E Collaboration Meeting Mar10-11, 2010
Low mass dimuon acceptance
status of TPC experiment
Presentation transcript:

Analysis strategy of high multiplicity data Toshiyuki Gogami 24/Feb/2011

Contents 1.Introduction – Status of multiplicity and rate 2.Origin of multiplicity of HKS – Simple simulation 3.Tracking – Problems and strategy to improve – Development DC hit wire selection with KTOF 4.Outlook & Summary

Introductions

Analysis process tracking x, x’, y, y’ at Reference plane x’, y’, p at Target Missing Mass tracking x, x’, y, y’ at Reference plane x’, y’, p at Target F2T function particle ID (select K + ) HKS HES tune This talk

Multiplicity of typical layer of chamber HES HKS ~1.13 ~1.28 ~2.24 ~4.94 Multiplicity is high for HKS

Hit wires in KDC1 Overhead view KDC1 Black : hit wires Blue : selected wires Red : track Black : hit wires Blue : selected wires Red : track CH 2 52 Cr Misidentification chance in hit wires selection increase ! REAL DATA lowhighlowhigh Overhead view

Singles rate summary Up to ~30 [MHz] Up to ~15 [MHz] HES HKS HKS trigger ~ 10[kHz] HES trigger ~ a few[MHz]

Rate dependences Quadratic dependence Linear dependence Why residuals get worse with rate (Multiplicity) ? – Hardware ? – Tracking is worse ? – Parameters ?

KTOF multiplicity ~2.7~1.8 ~6.5 ~3.8 CH 2, Cr, Multiplicity of KDC are not only high but also TOF counters are! (for heavy target )

Origin of high multiplicity (rate) in HKS

Background event from NMR port z [cm] y [cm] x [cm] These particles come from NMR port HKS dipole magnet NMR port KDC1 KDC2 KDC1 KDC2 KDC1 KDC2 KDC1 KDC2 Background events 9 Be, 38.4 [μA] Events on HKS optics Overhead view Side view Β ≈ 1 e -, e +

B.G. mix rate (real data) a b * hks ntulpe

e + simulation SIMULATION To see 1.Number of event 2.Angle & momentum of e + generated in target To see 1.Number of event 2.Angle & momentum of e + generated in target

Target thickness dependence (Simulation) H2OH2O 52 Cr 9 Be 12 C CH 2 10 B 7 Li Consistent with B.G. mix rate ! SIMULATION

Angle and momentum distribution of positrons HKS cannot accept positrons directly ! Generate these event in HKS GEANT (Next page) SIMULATION

e, e + background in GEANT simulation Vacuum chamber (sus304) NMR port (sus304) KDC1KDC2 e -, e + Generated particle : e + Distribution : spherical uniform Momentum : 860 – 1000 [MeV/c] Angle : 0 – 2 [mrad] 1000 events Number of e + (Simulation) B.G. mix rate (Real data) Correlation e + generated in target make HKS dirty

Tracking

Basic tracking procedure Good TDC Pattern recognition Track fit Solve left right Select good combination Black : hit wires Blue : selected wires Red : track CH 2 target KDC1 52 Cr target Combination selection with TOF counters Reduce hit wire combinations (h_tof_pre.f) High multiplicity Real data

New tracking scheme Good TDC Pattern recognition Track fit Solve left right Select good combination Combination selection with TOF counters Reduce hit wire combinations (h_tof_pre.f) High multiplicity Reduce hit wires to analyze

DC hit info. selection with TOF (xx’) Selective region Maximum gradient Minimum gradient Particle direction Gravity CUT ~8% ~17% Procedure in “h_dc_tofcut.f” 1.Get KTOF1X & 2X hit counter information 2.Make combination of 1X and 2X hit counter if those two are in same group (grouping) 3.Determine cut conditions on KDC1 & KDC2 4.Select Hit wires in KDC and Reorder them CUT Just applied to xx’-layers for test

Check works of the code GREEN region Selective region RED markers Selected hit wires BLACK markers Rejected hit wires Seems to work well Particle direction Gravity

Results of TOF cut with grouping CH 2, 2.0 [μA], Shift Same Residual Multiplicity CH 2, 2.0 [μA], ~2.3 ~1.2 beforeafter x x’ x

Result of TOF cut with grouping Original code With “h_dc_tofcut.f” Pure Selective region allowance KDC Too strict select Optimal allowance Good tracks hid by background appear ! Number of K + ~2[%] up

Apply to u,v-layer Applied to uu’ and vv’ layers, too. Selective region determined by 1X and 2X Convert v v’-layer x x’-layer

Check works of the code GREEN region Selective region RED markers & lines Selected hit wires BLACK markers & lines Rejected hit wires v v’ u u’u u’ x x’ v v’ u u’u u’ x x’ KDC1 KDC2 particle

Results of TOF cut with grouping (all layers) Residual Multiplicity CH 2, 2.0 [μA], Multiplicity of uu’vv’-layers CH 2 ~20% reduction 52 Cr ~5-10% reduction Same beforeafter

Results of TOF cut with grouping (all layers) Faster ! Increase ! TOF cut works well 52 Cr CH 2 52 Cr Faster ! Increase ! Parameters ?

Outlook

Summary Status of Multiplicity and rate – Higher in HKS than HES – Strongly dependent on target in HKS Origin of high multiplicity and rate – Should be e-, e+ Because of simulation results and its beta Development of Tracking for high multiplicity target – TOF cut with grouping works well Analysis time is faster by 10%. Multiplicity is decreased by 5~50%. Number of K + is increased by 25% for 52 Cr target. Residual is still bad for 52 Cr. Need to study

End

HKS detectors Strangeness 2010 at KEK K + p, π + Drift chambers -KDC1,KDC2- TOF walls -2X,1Y,1X- (Plastic scintillators) Cherenkov detectors -AC,WC- Aerogel (n=1.05) Water (n=1.33) 1 [m] June 2009 in JLab Hall-C HKS trigger CP = 1X ×1Y × 2X K = WC × AC  CP × K ~18 [kHz] (8 [μA] on 52 Cr) − π+π+ K+K+ p σ ≈ 250 [μm] TOF σ ≈ 170 [ps]

Strangeness 2010 at KEK HES Detectors Drift chambers - EDC1, EDC2 - TOF walls - EH1, EH2 - (Plastic scintillators) HES D magnet HES trigger EH1 × EH2 ~2 [MHz] (8 [μA] on 52 Cr) e Time Of Flight σ ~ 300 [ps]

TargetHypernucleusThickness [mg/cm 2 ] BeamTypical rate HES/HKS/COIN [kHz] Current [μA]Total charge[C] 7 Li 7 He / 7 / Be 9 Li / 9 / B 10 Be / 1 / C 12 B / 5 / Cr 52 V / 17 / 1.8 Data summary 22 nd Indian-summer school (SNP2010) Λ Λ Λ Λ Λ E ( 2009 Aug – Nov ) TargetHypernucleusThickness [mg/cm 2 ] Beam Current[μA]Total charge[C] CH 2 Λ, Σ H2OH2OΛ, Σ 0 ~ Physics Data Calibration Data

Analysis process tracking x, x’, y, y’ at Reference plane x’, y’, p at target Missing Mass tracking x, x’, y, y’ at Reference plane x’, y’, p at target F2T function particle ID (select K + ) HKS HES tune [mg/cm 2 ] 2.0 [μA] 38 [hours] σ = 2 [MeV/c 2 ] (NOT TUNED) p(e,e’K + )Λ p(e,e’K + )Σ 0

Multiplicity and Tracking Tracking 1.Resolution 2.Number of event Multiplicity affect

Tracking for high multiplicity Strangeness 2010 at KEK CH 2 target particle CH 2 target mean ~ 2 hit 52 Cr target mean ~ 6 hit 52 Cr target particle KDC1 tracking Blue : selected wires Black: hit wires Multiplicity of typical layer Multiplicity Tracking eff. 52 Cr CH 2 Developing new code Traditional JLab Hall-C tracking code cannot handle with high multiplicity data.

Multiplicity of typical layer in chamber CH 2 target 52 Cr target mean ~ 6 hit mean ~ 2 hit CH 2 target 52 Cr target mean ~ 1 hit 10 6 layer 6 6 HES HKS Multiplicity is high in HKS

Multiplicity for each layer TargetRun NumberBeam [μA]Multi KDC1-x Multi KDC1-x Thickness [mg/cm 2 ] CH H2OH2O Li Be B C Cr

Angular and momentum distribution of e + HKS should not accept e + directory. HKS detectors HKS D-magnet

Multiplicity Multiplicity is higher for heavy target KDC wire configuration K+K+ z y x u u’ x x’x’ v v’v’ CH 2, 2.0 [μA] 52 Cr, 7.6 [μA] Multiplicity distribution y x

Number of tracks TOP view KDC1 Black : hit wires Blue : selected wires Red : track Black : hit wires Blue : selected wires Red : track CH 2 52 Cr

Pattern recognition in KDC KDC wire configuration K+K+ z y x u u’ x x’x’ v v’v’ y x x 1.Test point 2.Space point x y 30° 90° 150° Space point

NFOM (“h_dc_tofcut.f” for all layers) Allowance applied to uuvv’ layers

New tracking scheme Good TDC Pattern recognition Track fit Solve left right Select good combination Combination selection with TOF counters Reduce hit wire combinations (h_tof_pre.f) High multiplicity Reduce hit wires to analyze 2 nd loop

DC hit info. selection with TOF Hit Selective region Maximum gradient Minimum gradient Particle direction Gravity CUT ~8% ~17% CUT

HTRACKING / h_dc_tofcut.f Procedure in “h_dc_tofcut.f” 1.Get KTOF1X & 2X hit counter information 2.Make combination of 1X and 2X hit counter if those two are in same group (grouping) 3.Determine cut conditions on KDC1 & KDC2 4.Select Hit wires in KDC and Reorder them Just applied to x,x’-layers for test Particle direction Gravity