Principles of Congestion Control Congestion: informally: “too many sources sending too much data too fast for network to handle” different from flow control!

Slides:



Advertisements
Similar presentations
Principles of Congestion Control Chapter 3.6 Computer Networking: A top-down approach.
Advertisements

3-1 TCP Protocol r point-to-point: m one sender, one receiver r reliable, in-order byte steam: m no “message boundaries” r pipelined: m TCP congestion.
1 TCP Congestion Control. 2 TCP Segment Structure source port # dest port # 32 bits application data (variable length) sequence number acknowledgement.
Introduction 1 Lecture 14 Transport Layer (Transmission Control Protocol) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer.
School of Information Technologies TCP Congestion Control NETS3303/3603 Week 9.
Announcement Homework 2 in tonight –Will be graded and sent back before Th. class Midterm next Tu. in class –Review session next time –Closed book –One.
Chapter 3 Transport Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 12.
Announcement Project 2 finally ready on Tlab Homework 2 due next Mon tonight –Will be graded and sent back before Tu. class Midterm next Th. in class –Review.
Transport Layer 3-1 Fast Retransmit r time-out period often relatively long: m long delay before resending lost packet r detect lost segments via duplicate.
Transport Layer3-1 Congestion Control. Transport Layer3-2 Principles of Congestion Control Congestion: r informally: “too many sources sending too much.
10/7/ /9/2003 TCP and Congestion Control October 7-9, 2003.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley,
Week 9 TCP9-1 Week 9 TCP 3 outline r 3.5 Connection-oriented transport: TCP m segment structure m reliable data transfer m flow control m connection management.
1 Lecture 9: TCP and Congestion Control Slides adapted from: Congestion slides for Computer Networks: A Systems Approach (Peterson and Davis) Chapter 3.
The Future r Homework questions> r The next test is coming the 19 th (just before turkey day!) r Wednesday = review + anything not done today r Friday.
1 Chapter 3 Transport Layer. 2 Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4.
Data Communication and Networks
Transport Layer3-1 Data Communication and Networks Lecture 8 Congestion Control October 28, 2004.
Transport Layer Congestion control. Transport Layer 3-2 Approaches towards congestion control End-to-end congestion control: r no explicit feedback.
EEC-484/584 Computer Networks Lecture 14 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Transport Layer Outline
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
Transport Layer3-1 Announcement r Homework 2 in tonight m Will be graded and sent back before Th. class r Midterm next Tu. in class m Review session next.
EEC-484/584 Computer Networks Lecture 16 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
3: Transport Layer3b-1 Principles of Congestion Control Congestion: r informally: “too many sources sending too much data too fast for network to handle”
Transport Layer 4 2: Transport Layer 4.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Chapter3_3.
Transport Layer3-1 Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles.
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A.
Transport Layer1 Flow and Congestion Control Ram Dantu (compiled from various text books)
17-1 Last time □ UDP socket programming ♦ DatagramSocket, DatagramPacket □ TCP ♦ Sequence numbers, ACKs ♦ RTT, DevRTT, timeout calculations ♦ Reliable.
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March
1 Transport Layer Lecture 10 Imran Ahmed University of Management & Technology.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
Transport Layer 3- Midterm score distribution. Transport Layer 3- TCP congestion control: additive increase, multiplicative decrease Approach: increase.
By N.Gopinath AP/CSE Unit: III Introduction to Transport layer.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
1 John Magee 20 February 2014 CS 280: Transport Layer: Congestion Control Concepts, TCP Congestion Control Most slides adapted from Kurose and Ross, Computer.
CS-1652 The slides are adapted from the publisher’s material All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Jack Lange.
Advance Computer Networks Lecture#09 & 10 Instructor: Engr. Muhammad Mateen Yaqoob.
TCP. TCP ACK generation [RFC 1122, RFC 2581] Event at Receiver Arrival of in-order segment with expected seq #. All data up to expected seq # already.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
-1- Georgia State UniversitySensorweb Research Laboratory CSC4220/6220 Computer Networks Dr. WenZhan Song Professor, Computer Science.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
Transport Layer session 1 TELE3118: Network Technologies Week 11: Transport Layer TCP Some slides have been taken from: r Computer Networking:
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
CS450 – Introduction to Networking Lecture 19 – Congestion Control (2)
Approaches towards congestion control
Transport Layer CS 381 3/7/2017.
Chapter 3 outline 3.1 transport-layer services
Chapter 6 TCP Congestion Control
CS-1652 Jack Lange University of Pittsburgh
Chapter 3 outline 3.1 Transport-layer services
Chapter 3-3 TCP Congestion CTL *
Flow and Congestion Control
Chapter 6 TCP Congestion Control
October 1st, 2013 CS-1652 Jack Lange University of Pittsburgh
CS 5565 Network Architecture and Protocols
TCP Overview.
CS-1652 Congestion Control Jack Lange University of Pittsburgh
Transport Layer: Congestion Control
Chapter 3 outline 3.1 Transport-layer services
TCP flow and congestion control
Chapter 3 Transport Layer
October 4th, 2011 CS-1652 Jack Lange University of Pittsburgh
Presentation transcript:

Principles of Congestion Control Congestion: informally: “too many sources sending too much data too fast for network to handle” different from flow control! manifestations: –lost packets (buffer overflow at routers) –long delays (queueing in router buffers) a top-10 problem!

Causes/costs of congestion: scenario 1 two senders, two receivers one router, infinite buffers no retransmission large delays when congested maximum achievable throughput unlimited shared output link buffers Host A in : original data Host B out

Causes/costs of congestion: scenario 2 one router, finite buffers sender retransmission of lost packet finite shared output link buffers Host A in : original data Host B out ' in : original data, plus retransmitted data

Approaches towards congestion control End-end congestion control: no explicit feedback from network congestion inferred from end-system observed loss, delay approach taken by TCP Network-assisted congestion control: routers provide feedback to end systems –single bit indicating congestion (SNA, DECbit, TCP/IP ECN, ATM) –explicit rate sender should send at Two broad approaches towards congestion control:

TCP Congestion Control end-end control (no network assistance) sender limits transmission: LastByteSent-LastByteAcked  CongWin Roughly, CongWin is dynamic, function of perceived network congestion How does sender perceive congestion? loss event = timeout or 3 duplicate acks TCP sender reduces rate ( CongWin ) after loss event three mechanisms: –AIMD –slow start –conservative after timeout events rate = CongWin RTT Bytes/sec

TCP AIMD multiplicative decrease: cut CongWin in half after loss event additive increase: increase CongWin by 1 MSS every RTT in the absence of loss events: probing Long-lived TCP connection

TCP Slow Start When connection begins, CongWin = 1 MSS –Example: MSS = 500 bytes & RTT = 200 msec –initial rate = 20 kbps available bandwidth may be >> MSS/RTT –desirable to quickly ramp up to respectable rate When connection begins, increase rate exponentially fast until first loss event

TCP Slow Start (more) When connection begins, increase rate exponentially until first loss event: –double CongWin every RTT –done by incrementing CongWin for every ACK received Summary: initial rate is slow but ramps up exponentially fast Host A one segment RTT Host B time two segments four segments

Refinement After 3 dup ACKs: –CongWin is cut in half –window then grows linearly But after timeout event: –CongWin instead set to 1 MSS; –window then grows exponentially –to a threshold, then grows linearly 3 dup ACKs indicates network capable of delivering some segments timeout before 3 dup ACKs is “more alarming” Philosophy:

Refinement (more) Q: When should the exponential increase switch to linear? A: When CongWin gets to 1/2 of its value before timeout. Implementation: Variable Threshold At loss event, Threshold is set to 1/2 of CongWin just before loss event

Summary: TCP Congestion Control When CongWin is below Threshold, sender in slow-start phase, window grows exponentially. When CongWin is above Threshold, sender is in congestion-avoidance phase, window grows linearly. When a triple duplicate ACK occurs, Threshold set to CongWin/2 and CongWin set to Threshold. When timeout occurs, Threshold set to CongWin/2 and CongWin is set to 1 MSS.

TCP sender congestion control EventStateTCP Sender ActionCommentary ACK receipt for previously unacked data Slow Start (SS) CongWin = CongWin + MSS, If (CongWin > Threshold) set state to “Congestion Avoidance” Resulting in a doubling of CongWin every RTT ACK receipt for previously unacked data Congestion Avoidance (CA) CongWin = CongWin+MSS * (MSS/CongWin) Additive increase, resulting in increase of CongWin by 1 MSS every RTT Loss event detected by triple duplicate ACK SS or CAThreshold = CongWin/2, CongWin = Threshold, Set state to “Congestion Avoidance” Fast recovery, implementing multiplicative decrease. CongWin will not drop below 1 MSS. TimeoutSS or CAThreshold = CongWin/2, CongWin = 1 MSS, Set state to “Slow Start” Enter slow start Duplicate ACK SS or CAIncrement duplicate ACK count for segment being acked CongWin and Threshold not changed

TCP throughput What’s the average throughout ot TCP as a function of window size and RTT? –Ignore slow start Let W be the window size when loss occurs. When window is W, throughput is W/RTT Just after loss, window drops to W/2, throughput to W/2RTT. Average throughout:.75 W/RTT

TCP Future Example: 1500 byte segments, 100ms RTT, want 10 Gbps throughput Requires window size W = 83,333 in-flight segments New versions of TCP for high-speed needed!

Fairness goal: if K TCP sessions share same bottleneck link of bandwidth R, each should have average rate of R/K TCP connection 1 bottleneck router capacity R TCP connection 2 TCP Fairness

Wireless network has a larger error rate. Is this a problem for the current TCP? TCP for Wireless networks