CSA2050: Introduction to Computational Linguistics Part of Speech (POS) Tagging II Transformation Based Tagging Brill (1995)

Slides:



Advertisements
Similar presentations
Three Basic Problems Compute the probability of a text: P m (W 1,N ) Compute maximum probability tag sequence: arg max T 1,N P m (T 1,N | W 1,N ) Compute.
Advertisements

School of something FACULTY OF OTHER School of Computing FACULTY OF ENGINEERING Machine Learning PoS-Taggers COMP3310 Natural Language Processing Eric.
School of something FACULTY OF OTHER School of Computing FACULTY OF ENGINEERING PoS-Tagging theory and terminology COMP3310 Natural Language Processing.
Three Basic Problems 1.Compute the probability of a text (observation) language modeling – evaluate alternative texts and models P m (W 1,N ) 2.Compute.
Language Modeling Speech Recognition is enhanced if the applications are able to verify the grammatical structure of the speech This requires an understanding.
BİL711 Natural Language Processing
Part of Speech Tagging Importance Resolving ambiguities by assigning lower probabilities to words that don’t fit Applying to language grammatical rules.
February 2007CSA3050: Tagging II1 CSA2050: Natural Language Processing Tagging 2 Rule-Based Tagging Stochastic Tagging Hidden Markov Models (HMMs) N-Grams.
Hidden Markov Models Bonnie Dorr Christof Monz CMSC 723: Introduction to Computational Linguistics Lecture 5 October 6, 2004.
Part of Speech Tagging with MaxEnt Re-ranked Hidden Markov Model Brian Highfill.
Part II. Statistical NLP Advanced Artificial Intelligence Part of Speech Tagging Wolfram Burgard, Luc De Raedt, Bernhard Nebel, Lars Schmidt-Thieme Most.
CS Word Sense Disambiguation. 2 Overview A problem for semantic attachment approaches: what happens when a given lexeme has multiple ‘meanings’?
POS Tagging Markov Models. POS Tagging Purpose: to give us explicit information about the structure of a text, and of the language itself, without necessarily.
Part-of-speech Tagging cs224n Final project Spring, 2008 Tim Lai.
Ch 10 Part-of-Speech Tagging Edited from: L. Venkata Subramaniam February 28, 2002.
CS Catching Up CS Porter Stemmer Porter Stemmer (1980) Used for tasks in which you only care about the stem –IR, modeling given/new distinction,
More about tagging, assignment 2 DAC723 Language Technology Leif Grönqvist 4. March, 2003.
1 CSC 594 Topics in AI – Applied Natural Language Processing Fall 2009/ Shallow Parsing.
POS based on Jurafsky and Martin Ch. 8 Miriam Butt October 2003.
Tagging – more details Reading: D Jurafsky & J H Martin (2000) Speech and Language Processing, Ch 8 R Dale et al (2000) Handbook of Natural Language Processing,
1 I256: Applied Natural Language Processing Marti Hearst Sept 20, 2006.
Transformation-based error- driven learning (TBL) LING 572 Fei Xia 1/19/06.
Syllabus Text Books Classes Reading Material Assignments Grades Links Forum Text Books עיבוד שפות טבעיות - שיעור חמישי POS Tagging Algorithms עידו.
Part of speech (POS) tagging
1 Complementarity of Lexical and Simple Syntactic Features: The SyntaLex Approach to S ENSEVAL -3 Saif Mohammad Ted Pedersen University of Toronto, Toronto.
Maximum Entropy Model LING 572 Fei Xia 02/07-02/09/06.
Word classes and part of speech tagging Chapter 5.
Maximum Entropy Model LING 572 Fei Xia 02/08/07. Topics in LING 572 Easy: –kNN, Rocchio, DT, DL –Feature selection, binarization, system combination –Bagging.
Albert Gatt Corpora and Statistical Methods Lecture 9.
Part-of-Speech Tagging
Intro to NLP - J. Eisner1 Part-of-Speech Tagging A Canonical Finite-State Task.
Lemmatization Tagging LELA /20 Lemmatization Basic form of annotation involving identification of underlying lemmas (lexemes) of the words in.
Part II. Statistical NLP Advanced Artificial Intelligence Applications of HMMs and PCFGs in NLP Wolfram Burgard, Luc De Raedt, Bernhard Nebel, Lars Schmidt-Thieme.
EMNLP’01 19/11/2001 ML: Classical methods from AI –Decision-Tree induction –Exemplar-based Learning –Rule Induction –T ransformation B ased E rror D riven.
Some Advances in Transformation-Based Part of Speech Tagging
Distributional Part-of-Speech Tagging Hinrich Schütze CSLI, Ventura Hall Stanford, CA , USA NLP Applications.
Comparative study of various Machine Learning methods For Telugu Part of Speech tagging -By Avinesh.PVS, Sudheer, Karthik IIIT - Hyderabad.
Albert Gatt Corpora and Statistical Methods Lecture 10.
인공지능 연구실 정 성 원 Part-of-Speech Tagging. 2 The beginning The task of labeling (or tagging) each word in a sentence with its appropriate part of speech.
Lecture 10 NLTK POS Tagging Part 3 Topics Taggers Rule Based Taggers Probabilistic Taggers Transformation Based Taggers - Brill Supervised learning Readings:
Recognizing Names in Biomedical Texts: a Machine Learning Approach GuoDong Zhou 1,*, Jie Zhang 1,2, Jian Su 1, Dan Shen 1,2 and ChewLim Tan 2 1 Institute.
10/30/2015CPSC503 Winter CPSC 503 Computational Linguistics Lecture 7 Giuseppe Carenini.
Transformation-Based Learning Advanced Statistical Methods in NLP Ling 572 March 1, 2012.
13-1 Chapter 13 Part-of-Speech Tagging POS Tagging + HMMs Part of Speech Tagging –What and Why? What Information is Available? Visible Markov Models.
Word classes and part of speech tagging Chapter 5.
Speech and Language Processing Ch8. WORD CLASSES AND PART-OF- SPEECH TAGGING.
Tokenization & POS-Tagging
CSA2050: Introduction to Computational Linguistics Part of Speech (POS) Tagging I Introduction Tagsets Approaches.
Word classes and part of speech tagging 09/28/2004 Reading: Chap 8, Jurafsky & Martin Instructor: Rada Mihalcea Note: Some of the material in this slide.
Albert Gatt LIN3022 Natural Language Processing Lecture 7.
Albert Gatt Corpora and Statistical Methods. POS Tagging Assign each word in continuous text a tag indicating its part of speech. Essentially a classification.
Natural Language Processing
CSA3202 Human Language Technology HMMs for POS Tagging.
CS : Speech, NLP and the Web/Topics in AI Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture-14: Probabilistic parsing; sequence labeling, PCFG.
Number Sense Disambiguation Stuart Moore Supervised by: Anna Korhonen (Computer Lab)‏ Sabine Buchholz (Toshiba CRL)‏
February 2007CSA3050: Tagging III and Chunking 1 CSA2050: Natural Language Processing Tagging 3 and Chunking Transformation Based Tagging Chunking.
Automatic Grammar Induction and Parsing Free Text - Eric Brill Thur. POSTECH Dept. of Computer Science 심 준 혁.
Shallow Parsing for South Asian Languages -Himanshu Agrawal.
Human Language Technology Part of Speech (POS) Tagging II Rule-based Tagging.
Exploiting Named Entity Taggers in a Second Language Thamar Solorio Computer Science Department National Institute of Astrophysics, Optics and Electronics.
Statistical Machine Translation Part II: Word Alignments and EM Alex Fraser Institute for Natural Language Processing University of Stuttgart
Word classes and part of speech tagging. Slide 1 Outline Why part of speech tagging? Word classes Tag sets and problem definition Automatic approaches.
Modified from Diane Litman's version of Steve Bird's notes 1 Rule-Based Tagger The Linguistic Complaint –Where is the linguistic knowledge of a tagger?
CSA2050: Introduction to Computational Linguistics Part of Speech (POS) Tagging II Transformation Based Tagging Brill (1995)
Part-of-Speech Tagging CSCI-GA.2590 – Lecture 4 Ralph Grishman NYU.
Language Identification and Part-of-Speech Tagging
CSCI 5832 Natural Language Processing
N-Gram Model Formulas Word sequences Chain rule of probability
Lecture 6: Part of Speech Tagging (II): October 14, 2004 Neal Snider
Chunk Parsing CS1573: AI Application Development, Spring 2003
Presentation transcript:

CSA2050: Introduction to Computational Linguistics Part of Speech (POS) Tagging II Transformation Based Tagging Brill (1995)

February 2007CSA3050: Tagging III and Chunking2 3 Approaches to Tagging 1. Rule-Based Tagger: ENGTWOL Tagger (Voutilainen 1995) 2. Stochastic Tagger: HMM-based Tagger 3. Transformation-Based Tagger: Brill Tagger (Brill 1995)

April 2005CLINT Lecture IV3 Transformation-Based Tagging A combination of rule-based and stochastic tagging methodologies: like the rule-based tagging because rules are used to specify tags in a certain environment; like stochastic tagging, because machine learning is used. uses Transformation-Based Learning (TBL) Input: tagged corpus  dictionary (with most frequent tags)

April 2005CLINT Lecture IV4 Transformation-Based Tagging Basic Process: Set the most probable tag for each word as a start value, e.g. tag all “race” with NN P(NN|race) =.98 P(VB|race) =.02 The set of possible transformations is limited by using a fixed number of rule templates, containing slots and allowing a fixed number of fillers to fill the slots

April 2005CLINT Lecture IV5 Transformation Based Error Driven Learning unannotated text initial state annotated text TRUTHlearner transformation rules diagram after Brill (1996) retag

April 2005CLINT Lecture IV6 TBL Requirements Initial State Annotator List of allowable transformations Scoring function Search strategy

February 2007CSA3050: Tagging III and Chunking7 Initial State Annotation Input Corpus Dictionary Frequency counts for each entry Output Corpus tagged with most frequent tags

February 2007CSA3050: Tagging III and Chunking8 Transformations Each transformation comprises A source tag A target tag A triggering environment Example NN VB Previous tag is TO

February 2007CSA3050: Tagging III and Chunking9 More Examples Source tag Target Tag Triggering Environment NN VB previous tag is TO VBP VB one of the three previous tags is MD JJR RBR next tag is JJ VBP VB one of the two previous words is n’t

February 2007CSA3050: Tagging III and Chunking10 TBL Requirements Initial State Annotator List of allowable transformations Scoring function Search strategy

April 2005CLINT Lecture IV11 Rule Templates - triggering environments Schemat i-3 t i-2 t i-1 t i t i+1 t i+2 t i+3 1* 2* 3* 4* 5* 6* 7* 8* 9*

February 2007CSA3050: Tagging III and Chunking12 Set of Possible Transformations The set of possible transformations is enumerated by allowing every possible tag or word in every possible slot in every possible schema This set can get quite large

April 2005CLINT Lecture IV13 Rule Types and Instances Brill’s Templates Each rule begins with change tag a to tag b The variables a,b,z,w range over POS tags All possible variable substitutions are considered

February 2007CSA3050: Tagging III and Chunking14 TBL Requirements Initial State Annotator List of allowable transformations Scoring function Search strategy

February 2007CSA3050: Tagging III and Chunking15 Scoring Function For a given tagging state of the corpus For a given transformation For every word position in the corpus If the rule applies and yields a correct tag, increment score by 1 If the rule applies and yields an incorrect tag, decrement score by 1

April 2005CLINT Lecture IV16 The Basic Algorithm Label every word with its most likely tag Repeat the following until a stopping condition is reached. Examine every possible transformation, selecting the one that results in the most improved tagging Retag the data according to this rule Append this rule to output list Return output list

April 2005CLINT Lecture IV17 Examples of learned rules

April 2005CLINT Lecture IV18 TBL: Remarks Execution Speed: TBL tagger is slower than HMM approach. Learning Speed is slow: Brill’s implementation over a day (600k tokens) BUT … Learns small number of simple, non- stochastic rules Can be made to work faster with Finite State Transducers

April 2005CLINT Lecture IV19 Tagging Unknown Words New words added to (newspaper) language 20+ per month Plus many proper names … Increases error rates by 1-2% Methods Assume the unknowns are nouns. Assume the unknowns have a probability distribution similar to words occurring once in the training set. Use morphological information, e.g. words ending with –ed tend to be tagged VBN.

April 2005CLINT Lecture IV20 Evaluation The result is compared with a manually coded “Gold Standard” Typically accuracy reaches 95-97% This may be compared with the result for a baseline tagger (one that uses no context). Important: 100% accuracy is impossible even for human annotators.

April 2005CLINT Lecture IV21 A word of caution 95% accuracy: every 20th token wrong 96% accuracy: every 25th token wrong an improvement of 25% from 95% to 96% ??? 97% accuracy: every 33th token wrong 98% accuracy: every 50th token wrong

April 2005CLINT Lecture IV22 How much training data is needed? When working with the STTS (50 tags) we observed a strong increase in accuracy when testing on 10´000, 20´000, …, 50´000 tokens, a slight increase in accuracy when testing on up to 100´000 tokens, hardly any increase thereafter.

April 2005CLINT Lecture IV23 Summary Tagging decisions are conditioned on a wider range of events that HMM models mentioned earlier. For example, left and right context can be used simultaneously. Learning and tagging are simple, intuitive and understandable. Transformation-based learning has also been applied to sentence parsing.

April 2005CLINT Lecture IV24 The Three Approaches Compared Rule Based Hand crafted rules It takes too long to come up with good rules Portability problems Stochastic Find the sequence with the highest probability – Viterbi Algorithm Result of training not accessible to humans Large volume of intermediate results Transformation Rules are learned Small number of rules Rules can be inspected and modified by humans