Dietrich Habs ELI Photonuclear Bucharest, Feb 2, 2010 1 D. Habs LMU München Fakultät f. Physik Max-Planck-Institut f. Quantenoptik A Laser-Accelerated.

Slides:



Advertisements
Similar presentations
Schemes for generation of attosecond pulses in X-ray FELs E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov The potential for the development of XFEL beyond.
Advertisements

Photo-Nuclear Physics Experiments by using an Intense Photon Beam Toshiyuki Shizuma Gamma-ray Nondestructive Detection Research Group Japan Atomic Energy.
GOVERNMENT OF ROMANIA Structural Instruments Sectoral Operational Programme „Increase of Economic Competitiveness” “Investments for Your Future”
The scaling of LWFA in the ultra-relativistic blowout regime: Generation of Gev to TeV monoenergetic electron beams W.Lu, M.Tzoufras, F.S.Tsung, C. Joshi,
Extreme Light Infrastructure – Nuclear Physics 2 nd Workshop on Ion Beam Instrumentation LULI, Paris, June 7 th – 8 th, 2012.
0 Relativistic induced transparency and laser propagation in an overdense plasma Su-Ming Weng Theoretical Quantum Electronics (TQE), Technische Universität.
Mass measurements on neutron-rich nuclei with the CPT mass CARIBU Kumar S. Sharma Department of Physics and Astronomy Winnipeg MB.
Capture, focusing and energy selection of laser driven ion beams using conventional beam elements Morteza Aslaninejad Imperial College 13 December 2012.
西湖国际聚变理论与模拟研讨会 西湖国际聚变理论与模拟研讨会 M. Y. Yu 郁明阳 Institute for Fusion Theory and Simulation Zhejiang University Hangzhou
SCT-2012, Novosibirsk, June 8, 2012 SHOCK WAVE PARTICLE ACCELERATION in LASER- PLASMA INTERACTION G.I.Dudnikova, T.V.Leseykina ICT SBRAS.
The Intensity-Pulse Duration Conjecture: ELI’s Lynchpin ELI-NP: The Way Ahead Bucharest March 10, 2011 Gérard Mourou, Institut de Lumière Extrême 28/02/11mourou.
High-charge energetic electron beam generated in the bubble regime Baifei Shen ( 沈百飞 ) State Key Laboratory of High Field Laser Physics, Shanghai Institute.
2. High-order harmonic generation in gases Attosecond pulse generation 1. Introduction to nonlinear optics.
Time-resolved analysis of large amplitude collective motion in metal clusters Metal clusters : close « cousins » of nuclei Time resolved : « Pump Probe.
Acceleration of a mass limited target by ultra-high intensity laser pulse A.A.Andreev 1, J.Limpouch 2, K.Yu.Platonov 1 J.Psikal 2, Yu.Stolyarov 1 1. ILPh.
Ultra-High-Intensity Laser-Plasma Interactions: Comparing Experimental Results with Three- Dimensional,Fully-Relativistic, Numerical Simultations Donald.
Lecture 3: Laser Wake Field Acceleration (LWFA)
Assembly of Targets for RPA by Compression Waves A.P.L.Robinson Plasma Physics Group, Central Laser Facility, STFC Rutherford-Appleton Lab.
Laser acceleration of electrons and ions: principles, issues, and applications Alexander Lobko Institute for Nuclear Problems, BSU Minsk Belarus.
2 Lasers: Centimeters instead of Kilometers ? If we take a Petawatt laser pulse, I=10 21 W/cm 2 then the electric field is as high as E=10 14 eV/m=100.
Bremsstrahlung Temperature Scaling in Ultra-Intense Laser- Plasma Interactions C. Zulick, B. Hou, J. Nees, A. Maksimchuk, A. Thomas, K. Krushelnick Center.
ENHANCED LASER-DRIVEN PROTON ACCELERATION IN MASS-LIMITED TARGETS
Rainer Hörlein 9/12/ ICUIL 2010 Watkins Glen Femtosecond Probing of Solid Density Plasmas with Coherent High Harmonic Radiation Rainer Hörlein.
Seeking for combined electron/ion spectrometer in laser ion acceleration experiments Outline  Motivation  Look back: laser driven mass-limited droplet.
Dietrich Habs ELI-NP workshop: The Way Ahead, Bucharest, Mar 10-12, D. Habs LMU München Fakultät f. Physik Max-Planck-Institut f. Quantenoptik Scientific.
NEEP 541 Radiation Interactions Fall 2003 Jake Blanchard.
Noyaux CERN- ISOLDE Yorick Blumenfeld.
Nuclear Astrophysics with the PJ Woods, University of Edinburgh.
N=126 factory Guy Savard Scientific Director of ATLAS Argonne National Laboratory & University of Chicago ATLAS Users Meeting ANL, May 15-16, 2014.
Peter G. Thirolf, LMU München The ‘Fission–Fusion‘ Reaction Mechanism: Using dense laser-driven ion beams for nuclear astrophysics for nuclear astrophysics.
Ultrafast particle and photon sources driven by intense laser ‐ plasma interaction Jyhpyng Wang Institute of Atomic and Molecular Sciences, Academia Sinica.
Mary Beard University of Notre Dame Reaction Rates Calculations in Dense Stellar Matter Frontiers 2005 Aim: To establish a general reaction.
Multi-GeV laser driven proton acceleration in the high current regime Laser-driven acceleration is living a major revolution (PW era)… …but will ever be.
Radioactive ion beam facilities How does they work ? 2012 Student Practice in JINR Fields of Research 9.oct.2012 I. Sivacekflerovlab.jinr.ru.
Opportunities for synthesis of new superheavy nuclei (What really can be done within the next few years) State of the art Outline of the model (4 slides.
Particle acceleration by circularly polarized lasers W-M Wang 1,2, Z-M Sheng 1,3, S Kawata 2, Y-T Li 1, L-M Chen 1, J Zhang 1,3 1 Institute of Physics,
N. Yugami, Utsunomiya University, Japan Generation of Short Electromagnetic Wave via Laser Plasma Interaction Experiments US-Japan Workshop on Heavy Ion.
Ulsan National Institute of Science and Technology Toward a World-Leading University Y.K KIM.
Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan National Taiwan University, Taiwan National Central University, Taiwan National Chung.
R. Kupfer, B. Barmashenko and I. Bar
LASER-PLASMA ACCELERATORS: PRODUCTION OF HIGH-CURRENT ULTRA-SHORT e - -BEAMS, BEAM CONTROL AND RADIATION GENERATION I.Yu. Kostyukov, E.N. Nerush (IAP RAS,
ELI Nuclear Physics Workshop Magurele Feb Gérard Mourou
Relativistic nonlinear optics in laser-plasma interaction Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan National Central University,
The FAIR* Project *Facility for Antiproton and Ion Research Outline:  FAIR layout  Research programs Peter Senger, GSI USTC Hefei Nov. 21, 2006 and CCNU.
1 Generation of laser-driven secondary sources and applications Patrizio Antici Istituto Nazionale di Fisica Nucleare Università di Roma “Sapienza”
Enhancing the Macroscopic Yield of Narrow-Band High-Order Harmonic Generation by Fano Resonances Muhammed Sayrac Phys-689 Texas A&M University 4/30/2015.
Stochastic Wake Field particle acceleration in GRB G. Barbiellini (1), F. Longo (1), N.Omodei (2), P.Tommasini (3), D.Giulietti (3), A.Celotti (4), M.Tavani.
W. Nazarewicz. Limit of stability for heavy nuclei Meitner & Frisch (1939): Nucleus is like liquid drop For Z>100: repulsive Coulomb force stronger than.
Production and beta decay lifetimes of heavy neutron-rich nuclei approaching the r-process path Teresa Kurtukian-Nieto Universidad de Santiago de Compostela.
Abel Blazevic GSI Plasma Physics/TU Darmstadt June 8, 2004 Energy loss of heavy ions in dense plasma Goal: To understand the interaction of heavy ions.
Magnetowave Induced Plasma Wakefield Acceleration for UHECR Guey-Lin Lin National Chiao-Tung University and Leung Center for Cosmology and Particle astrophysics,
Results using atomic targets Suppression of Nonsequential ionization from an atomic ion target (comparison of double ionization of Ar and Ar + ). Determination.
Non Double-Layer Regime: a new laser driven ion acceleration mechanism toward TeV 1.
Transverse Gradient Undulator and its applications to Plasma-Accelerator Based FELs Zhirong Huang (SLAC) Introduction TGU concept, theory, technology Soft.
Extreme Light Infrastructure - Nuclear Physics ELI – NP European Research Center Nicolae-Victor Zamfir National Institute for Physics and Nuclear Engineering.
Ionization Injection E. Öz Max Planck Institute Für Physik.
Munib Amin Institute for Laser and Plasma Physics Heinrich Heine University Düsseldorf Laser ion acceleration and applications A bouquet of flowers.
HHG and attosecond pulses in the relativistic regime Talk by T. Baeva University of Düsseldorf, Germany Based on the work by T. Baeva, S. Gordienko, A.
Dietrich Habs NUSTAR, Bucharest, Oct 21, 2011, 10:40 h 1 D. Habs LMU München Fakultät f. Physik Max-Planck-Institut f. Quantenoptik Extreme Light Infrastructure.
1 1 Office of Science Strong Field Electrodynamics of Thin Foils S. S. Bulanov Lawrence Berkeley National Laboratory, Berkeley, CA We acknowledge support.
Physical Mechanism of the Transverse Instability in the Radiation Pressure Ion Acceleration Process Yang Wan Department of Engineering Physics, Tsinghua.
23. September 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Prof. Dr.-Ing. Thomas Weiland | 1 Laser acceleration.
New concept of light ion acceleration from low-density target
V. Bagnoud PHELIX, Plasma Physics department GSI Darmstadt
The 2nd European Advanced Accelerator Concepts Workshop
Generation of high-pressure shocks in the LICPA-driven collider
Wakefield Accelerator
Seminar on Radio Active Ion Beam
Unit 11 - Nuclear Chemistry
EX18710 (大阪大学推薦課題) 課題代表者  矢野 将寛 (大阪大学大学院 工学研究科) 研究課題名
Presentation transcript:

Dietrich Habs ELI Photonuclear Bucharest, Feb 2, D. Habs LMU München Fakultät f. Physik Max-Planck-Institut f. Quantenoptik A Laser-Accelerated Th Beam is Used to Produce Neutron-Rich Nuclei Around the N=126 Waiting Point of the r-Process Via the Fission-Fusion Reaction Mechanism

Dietrich Habs ELI Photonuclear Bucharest, Feb 2, A laser-accelerated Th beam is used to produce neutron-rich nuclei around the waiting point N = 126 of the r-process via the fission-fusion mechanism Radiation Pressure Acceleration (RPA) Atomic stopping of dense ion bunches The astrophysical r-process and the N = 126 waiting point Experimental setup Outline New nuclear and astrophysics with APOLLON

Dietrich Habs ELI Photonuclear Bucharest, Feb 2, Ion acceleration TNSA (target-normal sheath acceleration) Low conversion efficiency Huge lasers are required Laser acceleration schemes Former schemes S.C. Wilks et al., Phys. Plasmas 8, 542 (2001).

Dietrich Habs ELI Photonuclear Bucharest, Feb 2, Normalized areal electron density: Normalized vector potential: Optimum ion acceleration for Optimum electron acceleration for ions electrons New Acceleration Mechanism = dimensionless S.G. Rykovanov et al., New J. Phys. 10, (2008). O. Klimo et al., Phys. Rev. ST AB 11, (2008).

Dietrich Habs ELI Photonuclear Bucharest, Feb 2, Radiation pressure acceleration (RPA) Cold compression of electron sheet. Rectified dipole field between electrons and ions. Neutral bunch of ions + electrons accelerated. Solid-state density: e cm –3 Classical bunches: 10 8 e cm –3 Very efficient!

Dietrich Habs ELI Photonuclear Bucharest, Feb 2, Laser Power: 15 TW (700 mJ in 45 fs) Focused Intensity: a L = 5, Contrast: > A. Henig et al.,“Radiation pressure acceleration of ion beams driven by circularly polarized laser pulses”, Phys. Rev. Lett. 103, (2009). RPA ion accel. + DLC foils (I) Peak at very low target thickness of 5.6 nmCold target for circular polarization Max-Born Institute (MBI), Berlin

Dietrich Habs ELI Photonuclear Bucharest, Feb 2, RPA ion accel. + DLC foils (II) Hot electronscold electrons Experiment Theory 2D PIC simulations

Dietrich Habs ELI Photonuclear Bucharest, Feb 2, RPA ion accel. + DLC foils (III) Theory 2D PIC simulations electrons ions Phase space rotation Peak in ion spectrum

Dietrich Habs ELI Photonuclear Bucharest, Feb 2, RPA ion accel. + DLC foils (IV) Theory Hot electrons exploding foilCold electrons  = 61 fs

Dietrich Habs ELI Photonuclear Bucharest, Feb 2, RPA ↔ TNSA Ion acceleration RPA: much higher conversion efficiency at short pulse durations. Ultra-thin foils: MBI-laser (Berlin) 45 fs Trident-laser (LANL) 500 fs

Dietrich Habs ELI Photonuclear Bucharest, Feb 2, RPA ↔ TNSA Ion acceleration

Dietrich Habs ELI Photonuclear Bucharest, Feb 2, Experimental requirements 1)Ultra-high contrast → Double plasma mirror 2)Ultra-thin target foils I/  or I/  controls acceleration Target technology is important

Dietrich Habs ELI Photonuclear Bucharest, Feb 2, Chart of the Nuclides r-process and waiting points Superheavies: Z = 110, T 1/2 = 10 9 a ? recycling of fission fragments ?

Dietrich Habs ELI Photonuclear Bucharest, Feb 2, r-process Solar abundances

Dietrich Habs ELI Photonuclear Bucharest, Feb 2, r-process Supernova II explosions and neutron star merger Neutron star merger Supernova type II explosion

Dietrich Habs ELI Photonuclear Bucharest, Feb 2, Nuclear masses Theories and experiment

Dietrich Habs ELI Photonuclear Bucharest, Feb 2, Fission-fusion reaction 10 MeV/u H, C, O, 232 Th, beam Th target a) FissionH, C, O + Th → F L + F H fission fragments in target 232 Th Th → fission of beam in F L + F H Reaction of radioactive short-lived light fission fragments of beam + Radioactive short-lived light fission fragments of the target b) Fusion:F L + F L → A Z ≈ nuclei close to N=126 waiting point F L + F H → 232 Thold nuclei F H + F H → unstable

Dietrich Habs ELI Photonuclear Bucharest, Feb 2, Stopping power of ion bunches with solid state density Bethe-Bloch formula for individual ion: a) enhanced stopping (10 5 ×) in low-density targets dense bunch interacts with collective wake → reduced fraction of nuclear reaction b) reduced stopping in solid target first electrons of bunch kick out electrons of foil like a snow plow. → enhanced fraction of nuclear reactions. binary collisions k D = Debye wave number long-range collective interaction  p = plasma frequency

Dietrich Habs ELI Photonuclear Bucharest, Feb 2, Experimental setup

Dietrich Habs ELI Photonuclear Bucharest, Feb 2, Fission-fusion experiment 1)Study RPA acceleration of heavy elements: efficiency, target shaping, yields 2)Study atomic stopping power of dense ion bunches 3)Perform fission-fusion experiment Estimated yield: 3·10 6 s -1 A =