Module #19: Graph Theory: part I Rosen 5 th ed., chs. 8-9 내년 3 월 ? 교환 학생 프로그램 영어 점수 미리미리 준비하세요.

Slides:



Advertisements
Similar presentations
1 Slides based on those of Kenneth H. Rosen Slides by Sylvia Sorkin, Community College of Baltimore County - Essex Campus Graphs.
Advertisements

Discrete Mathematics and Its Applications
1 Section 8.2 Graph Terminology. 2 Terms related to undirected graphs Adjacent: 2 vertices u & v in an undirected graph G are adjacent (neighbors) in.
SE561 Math Foundations Week 11 Graphs I
Graph Theory in CS Route Search in Online Map Services
Discrete Structures Chapter 7A Graphs Nurul Amelina Nasharuddin Multimedia Department.
Selected Topics in Data Networking Graph Representation.
Applied Discrete Mathematics Week 12: Trees
Graphs.
KNURE, Software department, Ph , N.V. Bilous Faculty of computer sciences Software department, KNURE Discrete.
Let us switch to a new topic:
Graphs Rosen 8.1, 8.2. There Are Many Uses for Graphs! Networks Data organizations Scene graphs Geometric simplification Program structure and processes.
9.2 Graph Terminology and Special Types Graphs
Intro to Graphs CSIT 402 Data Structures II. CSIT 402 Graph Introduction2 Graphs Graphs are composed of ›Nodes (vertices) Can be labeled ›Edges (arcs)
Graphs Chapter 10.
© by Kenneth H. Rosen, Discrete Mathematics & its Applications, Sixth Edition, Mc Graw-Hill, 2007 Chapter 9 (Part 1): Graphs  Introduction to Graphs (9.1)
Graph Theoretic Concepts. What is a graph? A set of vertices (or nodes) linked by edges Mathematically, we often write G = (V,E)  V: set of vertices,
1 Graphs Chapters 9.1 and 9.2 University of Maryland Chapters 9.1 and 9.2 Based on slides by Y. Peng University of Maryland.
Graph Theory 4/23/2017.
16.1 CompSci 102© Michael Frank Today’s topics GraphsGraphs –Basics & types –Properties –Connectivity –Hamilton & Euler Paths Reading: Sections Reading:
1 Elements of Graph Theory Quick review of Chapters 9.1… 9.5, 9.7 (studied in Mt1348/2008) = all basic concepts must be known New topics we will mostly.
Lecture 10: Graphs Graph Terminology Special Types of Graphs
© by Kenneth H. Rosen, Discrete Mathematics & its Applications, Sixth Edition, Mc Graw-Hill, 2007 Chapter 9 (Part 2): Graphs  Graph Terminology (9.2)
9.2: Graph Terminology. Special Simple Graphs Complete GraphsK 1,… CyclesC 3,… WheelsW 3,… N-cubesQ 1,… Complete bipartiteK 2,2,…
Advanced Computer Networks: Part 1 Complex Networks, P2P Networks and Swarm Intelligence on Graphs.
1 CS104 : Discrete Structures Chapter V Graph Theory.
9.1 Introduction to Graphs
GRAPHS THEROY. 2 –Graphs Graph basics and definitions Vertices/nodes, edges, adjacency, incidence Degree, in-degree, out-degree Subgraphs, unions, isomorphism.
Based on Rosen, Discrete Mathematics & Its Applications, 5e Prepared by (c) Michael P. Frank Modified by (c) Haluk Bingöl 1/18 Module.
Graphs.  Definition A simple graph G= (V, E) consists of vertices, V, a nonempty set of vertices, and E, a set of unordered pairs of distinct elements.
Graphs What are Graphs? General meaning in everyday math: A plot or chart of numerical data using a coordinate system. Technical meaning in discrete.
Discrete Structures Graphs 1 (Ch. 10) Dr. Muhammad Humayoun Assistant Professor COMSATS Institute of Computer Science, Lahore.
1 12/2/2015 MATH 224 – Discrete Mathematics Formally a graph is just a collection of unordered or ordered pairs, where for example, if {a,b} G if a, b.
9 Graphs. A graph G = (V, E) consists of V, a nonempty set of vertices (or nodes) and E, a set of edges. Each edge has either one or two vertices associated.
September1999 CMSC 203 / 0201 Fall 2002 Week #13 – 18/20/22 November 2002 Prof. Marie desJardins.
© by Kenneth H. Rosen, Discrete Mathematics & its Applications, Sixth Edition, Mc Graw-Hill, 2007 Chapter 9 (Part 1): Graphs  Introduction to Graphs (9.1)
Graphs 9.1 Graphs and Graph Models أ. زينب آل كاظم 1.
GRAPHS. Graph Graph terminology: vertex, edge, adjacent, incident, degree, cycle, path, connected component, spanning tree Types of graphs: undirected,
Basic properties Continuation
Discrete Structures CISC 2315 FALL 2010 Graphs & Trees.
Graphs Basic properties.
1 Graphs Terminology By: Sandeep Tuli Astt. Prof. CSE.
LOGO.  Relations:  In these slides: Introductions to graphs Graph terminology Representing graphs and graph isomorphism Connectivity Euler and Hamilton.
Chapter 9: Graphs.
Graphs Rosen, Chapter 8. NOT ONE OF THESE! One of these!
Chap 7 Graph Def 1: Simple graph G=(V,E) V : nonempty set of vertices E : set of unordered pairs of distinct elements of V called edges Def 2: Multigraph.
1 GRAPH Learning Outcomes Students should be able to: Explain basic terminology of a graph Identify Euler and Hamiltonian cycle Represent graphs using.
GRAPH THEORY Discrete Math Team KS MATEMATIKA DISKRIT (DISCRETE MATHEMATICS )
رياضيات متقطعة لعلوم الحاسب MATH 226. Chapter 10.
1 Graphs Chapters 10.1 and 10.2 University of Maryland Chapters 10.1 and 10.2 Based on slides by Y. Peng University of Maryland.
Chapter Chapter Summary Graphs and Graph Models Graph Terminology and Special Types of Graphs Representing Graphs and Graph Isomorphism Connectivity.
Graphs: Definitions and Basic Properties
Graphs Rosen, Chapter 8.
Lecture 19: CONNECTIVITY Sections
Applied Discrete Mathematics Week 13: Graphs
Copyright © Zeph Grunschlag,
Graph Graphs and graph theory can be used to model:
COT 3100, Spring 2001 Applications of Discrete Structures
Chapters 8.1 and 8.2 Based on slides by Y. Peng University of Maryland
Taibah University College of Computer Science & Engineering Course Title: Discrete Mathematics Code: CS 103 Chapter 10 Graphs Slides are adopted from “Discrete.
Graphs Chapters 10.1 and 10.2 Based on slides by Y. Peng University of Maryland.
Graphs.
Rosen 5th ed., chs. 8-9 ~44 slides (more later), ~3 lectures
Chapters 8.1 and 8.2 Based on slides by Y. Peng University of Maryland
Graph & Trees Chapters 10-11
CS100: Discrete structures
Rosen 5th ed., ch. 8.1~8.5 ~44 slides (more later), ~3 lectures
Let us switch to a new topic:
Lecture 10: Graphs Graph Terminology Special Types of Graphs
Concepts of Computation
Presentation transcript:

Module #19: Graph Theory: part I Rosen 5 th ed., chs. 8-9 내년 3 월 ? 교환 학생 프로그램 영어 점수 미리미리 준비하세요

What are Graphs? General meaning in everyday math: A plot or chart of numerical data using a coordinate system. Technical meaning in discrete mathematics: A particular class of discrete structures (to be defined) that is useful for representing relations and has a convenient webby- looking graphical representation. Not

Applications of Graphs Potentially anything (graphs can represent relations, relations can describe the extension of any predicate). Apps in networking, scheduling, flow optimization, circuit design, path planning. computer game-playing, program compilation, object-oriented design, …

Simple Graphs Correspond to symmetric binary relations R. A simple graph G=(V,E) consists of: –a set V of vertices or nodes (V corresponds to the universe of the relation R), –a set E of edges / arcs / links: unordered pairs of elements u,v  V, such that uRv. Visual Representation of a Simple Graph One edge between a pair of vertices

Let V be the set of states in the far- southeastern U.S.: –V={FL, GA, AL, MS, LA, SC, TN, NC} Let E={{u,v}|u adjoins v} ={{FL,GA},{FL,AL},{FL,MS}, {FL,LA},{GA,AL},{AL,MS}, {MS,LA},{GA,SC},{GA,TN}, {SC,NC},{NC,TN},{MS,TN}, {MS,AL}} Example of a Simple Graph TN AL MS LA SC GA FL NC

Multigraphs Like simple graphs, but there may be more than one edge connecting two given nodes. A multigraph G=(V, E, f ) consists of a set V of vertices, a set E of edges, and a function f:E  {{u,v}|u,v  V  u  v}. E.g., nodes are cities, edges are segments of major highways. Parallel edges

Pseudographs Like a multigraph, but edges connecting a node to itself are allowed. A pseudograph G=(V, E, f ) where f:E  {{u,v}|u,v  V}. Edge e  E is a loop if f(e)={u,u}={u}. E.g., nodes are campsites in a state park, edges are hiking trails through the woods.

Directed Graphs Correspond to arbitrary binary relations R, which need not be symmetric. A directed graph (V,E) consists of a set of vertices V and a binary relation E on V. E.g.: V = people, E={(x,y) | x loves y}

Directed Multigraphs Like directed graphs, but there may be more than one arc from a node to another. A directed multigraph G=(V, E, f ) consists of a set V of vertices, a set E of edges, and a function f:E  V  V. E.g., V=web pages, E=hyperlinks. The WWW is a directed multigraph...

Types of Graphs: Summary Summary of the book’s definitions. Keep in mind this terminology is not fully standardized...

§8.2: Graph Terminology Adjacent, connects, endpoints, degree, initial, terminal, in-degree, out-degree, complete, cycles, wheels, n-cubes, bipartite, subgraph, union.

Adjacency Let G be an undirected graph with edge set E. Let e  E be (or map to) the pair {u,v}. Then we say: u, v are adjacent / neighbors / connected. Edge e is incident with vertices u and v. Edge e connects u and v. Vertices u and v are endpoints of edge e.

Degree of a Vertex Let G be an undirected graph, v  V a vertex. The degree of v, deg(v), is its number of incident edges. (Except that any self-loops are counted twice.) A vertex of degree 0 is isolated. A vertex of degree 1 is pendant.

Handshaking Theorem Let G be an undirected (simple, multi-, or pseudo-) graph with vertex set V and edge set E. Then Corollary: Any undirected graph has an even number of vertices of odd degree.

Directed Adjacency Let G be a directed (possibly multi-) graph, and let e be an edge of G that is (or maps to) (u,v). Then we say: –u is adjacent to v, v is adjacent from u –e comes from u, e goes to v. –e connects u to v, e goes from u to v –the initial vertex of e is u –the terminal vertex of e is v

Directed Degree Let G be a directed graph, v a vertex of G. –The in-degree of v, deg  (v), is the number of edges going to v. –The out-degree of v, deg  (v), is the number of edges coming from v. –The degree of v, deg(v)  deg  (v)+deg  (v), is the sum of v’s in-degree and out-degree.

Directed Handshaking Theorem Let G be a directed (possibly multi-) graph with vertex set V and edge set E. Then: Note that the degree of a node is unchanged by whether we consider its edges to be directed or undirected.

Special Graph Structures Special cases of undirected graph structures: Complete graphs K n Cycles C n Wheels W n n-Cubes Q n Bipartite graphs Complete bipartite graphs K m,n

Complete Graphs For any n  N, a complete graph on n vertices, K n, is a simple graph with n nodes in which every node is adjacent to every other node:  u,v  V: u  v  {u,v}  E. K1K1 K2K2 K3K3 K4K4 K5K5 K6K6 Note that K n has edges.

Cycles For any n  3, a cycle on n vertices, C n, is a simple graph where V={v 1,v 2,…,v n } and E={{v 1,v 2 },{v 2,v 3 },…,{v n  1,v n },{v n,v 1 }}. C3C3 C4C4 C5C5 C6C6 C7C7 C8C8 How many edges are there in C n ?

Wheels For any n  3, a wheel W n, is a simple graph obtained by taking the cycle C n and adding one extra vertex v hub and n extra edges {{v hub,v 1 }, {v hub,v 2 },…,{v hub,v n }}. W3W3 W4W4 W5W5 W6W6 W7W7 W8W8 How many edges are there in W n ?

n-cubes (hypercubes) A hypercube Q n is a n-dimensional graph with 2 n nodes At most n hops between any two nodes For any n  N, the hypercube Q n is a simple graph consisting of two copies of Q n-1 connected together at corresponding nodes. Q 0 has 1 node. Q0Q0 Q1Q1 Q2Q2 Q3Q3 Q4Q4

n-cubes (hypercubes) For any n  N, the hypercube Q n can be defined recursively as follows: –Q 0 ={{v 0 },  } (one node and no edges) –For any n  N, if Q n =(V,E), where V={v 1,…,v a } and E={e 1,…,e b }, then Q n+1 =(V  {v 1 ´,…,v a ´}, E  {e 1 ´,…,e b ´}  {{v 1,v 1 ´},{v 2,v 2 ´},…, {v a,v a ´}}) where v 1 ´,…,v a ´ are new vertices, and where if e i ={v j,v k } then e i ´={v j ´,v k ´}.

Bipartite Graphs A simple graph G is a bipartite graph if its vertex set V can be partitioned into two disjoint sets V1 and V2 such that every edge in G connects a vertex in V1 and a vertex in V2 V1 V2

Complete Bipartite Graphs The complete bipartite graph K m,n is the graph that has its vertex set partitioned into two subsets of m and n vertices, respectively. There is an edge between two vertices iff one vertex is in the 1 st subset and the other vertex is in the 2 nd subset. K 2,3 K 3,4

Subgraphs A subgraph of a graph G=(V,E) is a graph H=(W,F) where W  V and F  E. G H

Graph Unions The union G 1  G 2 of two simple graphs G 1 =(V 1, E 1 ) and G 2 =(V 2,E 2 ) is the simple graph (V 1  V 2, E 1  E 2 ).