Chapter 4 Classification. 2 Classification: Definition Given a collection of records (training set ) –Each record contains a set of attributes, one of.

Slides:



Advertisements
Similar presentations
Data Mining Classification: Basic Concepts,
Advertisements

Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Part I Introduction to Data Mining by Tan,
Classification: Definition Given a collection of records (training set ) –Each record contains a set of attributes, one of the attributes is the class.
Statistics 202: Statistical Aspects of Data Mining
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Classification: Definition l Given a collection of records (training set) l Find a model.
1 Data Mining Classification Techniques: Decision Trees (BUSINESS INTELLIGENCE) Slides prepared by Elizabeth Anglo, DISCS ADMU.
Decision Tree.
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach,
Classification Kuliah 4 4/29/2015. Classification: Definition  Given a collection of records (training set )  Each record contains a set of attributes,
Data Mining Classification This lecture node is modified based on Lecture Notes for Chapter 4/5 of Introduction to Data Mining by Tan, Steinbach, Kumar,
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach,
Lecture Notes for Chapter 4 (2) Introduction to Data Mining
Data Mining Classification: Naïve Bayes Classifier
Classification: Basic Concepts and Decision Trees.
Lecture Notes for Chapter 4 Introduction to Data Mining
Classification: Decision Trees, and Naïve Bayes etc. March 17, 2010 Adapted from Chapters 4 and 5 of the book Introduction to Data Mining by Tan, Steinbach,
Lecture outline Classification Decision-tree classification.
Lecture Notes for Chapter 4 Introduction to Data Mining
CSci 8980: Data Mining (Fall 2002)
1 BUS 297D: Data Mining Professor David Mease Lecture 5 Agenda: 1) Go over midterm exam solutions 2) Assign HW #3 (Due Thurs 10/1) 3) Lecture over Chapter.
Classification: Basic Concepts and Decision Trees
© Vipin Kumar CSci 8980 Fall CSci 8980: Data Mining (Fall 2002) Vipin Kumar Army High Performance Computing Research Center Department of Computer.
Lecture 5 (Classification with Decision Trees)
© Vipin Kumar CSci 8980 Fall CSci 8980: Data Mining (Fall 2002) Vipin Kumar Army High Performance Computing Research Center Department of Computer.
Example of a Decision Tree categorical continuous class Splitting Attributes Refund Yes No NO MarSt Single, Divorced Married TaxInc NO < 80K > 80K.
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach,
DATA MINING : CLASSIFICATION. Classification : Definition  Classification is a supervised learning.  Uses training sets which has correct answers (class.
DATA MINING LECTURE 9 Classification Basic Concepts Decision Trees.
1 Data Mining Lecture 3: Decision Trees. 2 Classification: Definition l Given a collection of records (training set ) –Each record contains a set of attributes,
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach,
Classification: Basic Concepts, Decision Trees, and Model Evaluation
Classification. 2 Classification: Definition  Given a collection of records (training set ) Each record contains a set of attributes, one of the attributes.
Classification Basic Concepts, Decision Trees, and Model Evaluation
Decision Trees and an Introduction to Classification.
Lecture 7. Outline 1. Overview of Classification and Decision Tree 2. Algorithm to build Decision Tree 3. Formula to measure information 4. Weka, data.
Machine Learning: Decision Trees Homework 4 assigned
Modul 6: Classification. 2 Classification: Definition  Given a collection of records (training set ) Each record contains a set of attributes, one of.
Review - Decision Trees
Decision Trees Jyh-Shing Roger Jang ( 張智星 ) CSIE Dept, National Taiwan University.
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation COSC 4368.
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Minqi Zhou.
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach,
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach,
Classification: Basic Concepts, Decision Trees. Classification: Definition l Given a collection of records (training set ) –Each record contains a set.
Decision Trees Example of a Decision Tree categorical continuous class Refund MarSt TaxInc YES NO YesNo Married Single, Divorced < 80K> 80K Splitting.
Classification & Regression COSC 526 Class 7 Arvind Ramanathan Computational Science & Engineering Division Oak Ridge National Laboratory, Oak Ridge Ph:
Lecture Notes for Chapter 4 Introduction to Data Mining
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach,
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4.
Machine Learning: Decision Trees Homework 4 assigned courtesy: Geoffrey Hinton, Yann LeCun, Tan, Steinbach, Kumar.
1 Illustration of the Classification Task: Learning Algorithm Model.
Big Data Analysis and Mining Qinpei Zhao 赵钦佩 2015 Fall Decision Tree.
Classification: Basic Concepts, Decision Trees. Classification Learning: Definition l Given a collection of records (training set) –Each record contains.
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining By Tan, Steinbach,
Introduction to Data Mining Clustering & Classification Reference: Tan et al: Introduction to data mining. Some slides are adopted from Tan et al.
Lecture Notes for Chapter 4 Introduction to Data Mining
Classification Decision Trees
Data Mining Classification: Basic Concepts and Techniques
Introduction to Data Mining, 2nd Edition by
Lecture Notes for Chapter 4 Introduction to Data Mining
Introduction to Data Mining, 2nd Edition by
Classification Basic Concepts, Decision Trees, and Model Evaluation
Introduction to Data Mining, 2nd Edition by
Machine Learning” Notes 2
Data Mining: Concepts and Techniques
Basic Concepts and Decision Trees
آبان 96. آبان 96 Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan,
Chapter 4 Classification
COSC 4368 Intro Supervised Learning Organization
COP5577: Principles of Data Mining Fall 2008 Lecture 4 Dr
Presentation transcript:

Chapter 4 Classification

2 Classification: Definition Given a collection of records (training set ) –Each record contains a set of attributes, one of the attributes is the class. Find a model for class attribute as a function of the values of other attributes. Goal: previously unseen records should be assigned a class as accurately as possible. –A test set is used to determine the accuracy of the model. Usually, the given data set is divided into training and test sets, with training set used to build the model and test set used to validate it.

3 Illustrating Classification Task

4 Examples of Classification Task Predicting tumor cells as benign or malignant Classifying credit card transactions as legitimate or fraudulent Classifying secondary structures of protein as alpha-helix, beta-sheet, or random coil Categorizing news stories as finance, weather, entertainment, sports, etc

5 Classification Techniques Decision Tree based Methods Rule-based Methods

6 Example of a Decision Tree categorical continuous class Refund MarSt TaxInc YES NO YesNo Married Single, Divorced < 80K> 80K Splitting Attributes Training Data Model: Decision Tree

7 Another Example of Decision Tree categorical continuous class MarSt Refund TaxInc YES NO Yes No Married Single, Divorced < 80K> 80K There could be more than one tree that fits the same data!

8 Decision Tree Classification Task Decision Tree

9 Apply Model to Test Data Refund MarSt TaxInc YES NO YesNo Married Single, Divorced < 80K> 80K Test Data Start from the root of tree.

10 Apply Model to Test Data Refund MarSt TaxInc YES NO YesNo Married Single, Divorced < 80K> 80K Test Data

11 Apply Model to Test Data Refund MarSt TaxInc YES NO YesNo Married Single, Divorced < 80K> 80K Test Data

12 Apply Model to Test Data Refund MarSt TaxInc YES NO YesNo Married Single, Divorced < 80K> 80K Test Data

13 Apply Model to Test Data Refund MarSt TaxInc YES NO YesNo Married Single, Divorced < 80K> 80K Test Data

14 Apply Model to Test Data Refund MarSt TaxInc YES NO YesNo Married Single, Divorced < 80K> 80K Test Data Assign Cheat to “No”

15 Decision Tree Classification Task Decision Tree

16 Decision Tree Induction Many Algorithms: –Hunt’s Algorithm (one of the earliest) –CART –ID3, C4.5 –SLIQ,SPRINT

17 General Structure of Hunt’s Algorithm Let D t be the set of training records that reach a node t General Procedure: –If D t contains records that belong the same class y t, then t is a leaf node labeled as y t –If D t is an empty set, then t is a leaf node labeled by the default class, y d –If D t contains records that belong to more than one class, use an attribute test to split the data into smaller subsets. Recursively apply the procedure to each subset. DtDt ?

18 Hunt’s Algorithm Don’t Cheat Refund Don’t Cheat Don’t Cheat YesNo Refund Don’t Cheat YesNo Marital Status Don’t Cheat Single, Divorced Married Taxable Income Don’t Cheat < 80K>= 80K Refund Don’t Cheat YesNo Marital Status Don’t Cheat Single, Divorced Married

19 Tree Induction Greedy strategy. –Split the records based on an attribute test that optimizes certain criterion. Issues –Determine how to split the records How to specify the attribute test condition? How to determine the best split? –Determine when to stop splitting

20 Tree Induction Greedy strategy. –Split the records based on an attribute test that optimizes certain criterion. Issues –Determine how to split the records How to specify the attribute test condition? How to determine the best split? –Determine when to stop splitting

21 How to Specify Test Condition? Depends on attribute types –Nominal –Ordinal –Continuous Depends on number of ways to split –2-way split –Multi-way split

22 Splitting Based on Nominal Attributes Multi-way split: Use as many partitions as distinct values. Binary split: Divides values into two subsets. Need to find optimal partitioning. CarType Family Sports Luxury CarType {Family, Luxury} {Sports} CarType {Sports, Luxury} {Family} OR

23 Multi-way split: Use as many partitions as distinct values. Binary split: Divides values into two subsets. Need to find optimal partitioning. What about this split? Splitting Based on Ordinal Attributes Size Small Medium Large Size {Medium, Large} {Small} Size {Small, Medium} {Large} OR Size {Small, Large} {Medium}

24 Splitting Based on Continuous Attributes Different ways of handling –Discretization to form an ordinal categorical attribute Static – discretize once at the beginning Dynamic – ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering. –Binary Decision: (A < v) or (A  v) consider all possible splits and finds the best cut can be more compute intensive

25 Splitting Based on Continuous Attributes

26 Tree Induction Greedy strategy. –Split the records based on an attribute test that optimizes certain criterion. Issues –Determine how to split the records How to specify the attribute test condition? How to determine the best split? –Determine when to stop splitting

27 How to determine the Best Split Before Splitting: 10 records of class 0, 10 records of class 1 Which test condition is the best?

28 How to determine the Best Split Greedy approach: –Nodes with homogeneous class distribution are preferred Need a measure of node impurity: Non-homogeneous, High degree of impurity Homogeneous, Low degree of impurity

29 Measures of Node Impurity Gini Index Entropy Misclassification error

30 How to Find the Best Split B? YesNo Node N3Node N4 A? YesNo Node N1Node N2 Before Splitting: M0 M1 M2M3M4 M12 M34 Gain = M0 – M12 vs M0 – M34

31 Measure of Impurity: GINI Gini Index for a given node t : (NOTE: p( j | t) is the relative frequency of class j at node t). –Maximum (1 - 1/n c ) when records are equally distributed among all classes, implying least interesting information –Minimum (0.0) when all records belong to one class, implying most interesting information

32 Examples for computing GINI P(C1) = 0/6 = 0 P(C2) = 6/6 = 1 Gini = 1 – P(C1) 2 – P(C2) 2 = 1 – 0 – 1 = 0 P(C1) = 1/6 P(C2) = 5/6 Gini = 1 – (1/6) 2 – (5/6) 2 = P(C1) = 2/6 P(C2) = 4/6 Gini = 1 – (2/6) 2 – (4/6) 2 = 0.444

33 Splitting Based on GINI Used in CART, SLIQ, SPRINT. When a node p is split into k partitions (children), the quality of split is computed as, where,n i = number of records at child i, n = number of records at node p.

34 Binary Attributes: Computing GINI Index Splits into two partitions Effect of Weighing partitions: –Larger and Purer Partitions are sought for. B? YesNo Node N1Node N2 Gini(N1) = 1 – (5/6) 2 – (2/6) 2 = Gini(N2) = 1 – (1/6) 2 – (4/6) 2 = Gini(Children) = 7/12 * /12 * = 0.333

35 Categorical Attributes: Computing Gini Index For each distinct value, gather counts for each class in the dataset Use the count matrix to make decisions Multi-way splitTwo-way split (find best partition of values)

36 Continuous Attributes: Computing Gini Index Use Binary Decisions based on one value Several Choices for the splitting value –Number of possible splitting values = Number of distinct values Each splitting value has a count matrix associated with it –Class counts in each of the partitions, A < v and A  v Simple method to choose best v –For each v, scan the database to gather count matrix and compute its Gini index –Computationally Inefficient! Repetition of work.

37 Continuous Attributes: Computing Gini Index... For efficient computation: for each attribute, –Sort the attribute on values –Linearly scan these values, each time updating the count matrix and computing gini index –Choose the split position that has the least gini index Split Positions Sorted Values

38 Notes on Overfitting Overfitting results in decision trees that are more complex than necessary Training error no longer provides a good estimate of how well the tree will perform on previously unseen records Need new ways for estimating errors

Causes of Overfitting Noise or errors in data Lack of Representative samples Inherent in multiple comparison procedures! 39

40 Estimating Generalization Errors Re-substitution errors:error on training (  e(t) ) Generalization errors: error on testing (  e’(t)) Methods for estimating generalization errors: –Optimistic approach: e’(t) = e(t) –Pessimistic approach: For each leaf node: e’(t) = (e(t)+0.5) Total errors: e’(T) = e(T) + N  0.5 (N: number of leaf nodes) For a tree with 30 leaf nodes and 10 errors on training (out of 1000 instances): Training error = 10/1000 = 1% Generalization error = (  0.5)/1000 = 2.5% –Reduced error pruning (REP): uses validation data set to estimate generalization error

41 Occam’s Razor Given two models of similar generalization errors, one should prefer the simpler model over the more complex model For complex models, there is a greater chance that it was fitted accidentally by errors in data Therefore, one should include model complexity when evaluating a model

42 Minimum Description Length (MDL) Cost(Model,Data) = Cost(Data|Model) + Cost(Model) –Cost is the number of bits needed for encoding. –Search for the least costly model. Cost(Data|Model) encodes the misclassification errors. Cost(Model) uses node encoding (number of children) plus splitting condition encoding.

43 How to Address Overfitting Pre-Pruning (Early Stopping Rule) –Stop algorithm before it becomes a fully- grown tree –Typical stopping conditions for a node: Stop if all instances belong to the same class Stop if all the attribute values are the same –More restrictive conditions: Stop if number of instances is less than some user-specified threshold Stop if class distribution of instances are independent of the available features (e.g., using  2 test) Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain).

44 How to Address Overfitting… Post-pruning –Grow decision tree to its entirety –Trim the nodes of the decision tree in a bottom-up fashion –If generalization error improves after trimming, replace sub-tree by a leaf node. –Class label of leaf node is determined from majority class of instances in the sub-tree –Can use MDL for post-pruning

45 Example of Post-Pruning Class = Yes20 Class = No10 Error = 10/30 Training Error (Before splitting) = 10/30 Pessimistic error = ( )/30 = 10.5/30 Training Error (After splitting) = 9/30 Pessimistic error (After splitting) = (9 + 4  0.5)/30 = 11/30 PRUNE! Class = Yes8 Class = No4 Class = Yes3 Class = No4 Class = Yes4 Class = No1 Class = Yes5 Class = No1

46 Examples of Post-pruning –Optimistic error? –Pessimistic error? –Reduced error pruning? C0: 11 C1: 3 C0: 2 C1: 4 C0: 14 C1: 3 C0: 2 C1: 2 Don’t prune for both cases Don’t prune case 1, prune case 2 Case 1: Case 2: Depends on validation set