CS 173, Lecture B August 27, 2015 Tandy Warnow. Proofs You want to prove that some statement A is true. You can try to prove it directly, or you can prove.

Slides:



Advertisements
Similar presentations
With examples from Number Theory
Advertisements

Discrete Math Methods of proof 1.
Introduction to Proofs
Mathematical induction Isaac Fung. Announcement ► Homework 1 released ► Due on 6 Oct 2008 (in class)
Proofs, Recursion and Analysis of Algorithms Mathematical Structures for Computer Science Chapter 2 Copyright © 2006 W.H. Freeman & Co.MSCS SlidesProofs,
Basic Structures: Sets, Functions, Sequences, Sums, and Matrices
CS 173: Discrete Mathematical Structures Cinda Heeren Rm 2213 Siebel Center Office Hours: M 12:30-2:30p.
Basic Structures: Sets, Functions, Sequences, Sums, and Matrices
Elementary Number Theory and Methods of Proof
Induction and recursion
Induction Sections 4.1 and 4.2 of Rosen Fall 2010
Logic: Connectives AND OR NOT P Q (P ^ Q) T F P Q (P v Q) T F P ~P T F
CMSC 250 Discrete Structures Number Theory. 20 June 2007Number Theory2 Exactly one car in the plant has color H( a ) := “ a has color”  x  Cars –H(
Copyright © Zeph Grunschlag,
1 Indirect Argument: Contradiction and Contraposition.
Introduction to Proofs ch. 1.6, pg. 87,93 Muhammad Arief download dari
Cardinality of a Set “The number of elements in a set.” Let A be a set. a.If A =  (the empty set), then the cardinality of A is 0. b. If A has exactly.
First Order Logic. This Lecture Last time we talked about propositional logic, a logic on simple statements. This time we will talk about first order.
Methods of Proof & Proof Strategies
CSCI 2110 Discrete Mathematics Tutorial 10 Chin 1.
Induction and recursion
Introduction to Proofs
1 Introduction to Abstract Mathematics Chapter 4: Sequences and Mathematical Induction Instructor: Hayk Melikya 4.1- Sequences. 4.2,
CS 173, Lecture B September 1, 2015 Tandy Warnow.
MATH 224 – Discrete Mathematics
1 Methods of Proof CS/APMA 202 Epp, chapter 3 Aaron Bloomfield.
Methods of Proof. This Lecture Now we have learnt the basics in logic. We are going to apply the logical rules in proving mathematical theorems. Direct.
CSE 311: Foundations of Computing Fall 2013 Lecture 8: More Proofs.
1 Sections 1.5 & 3.1 Methods of Proof / Proof Strategy.
Methods of Proof Lecture 3: Sep 9. This Lecture Now we have learnt the basics in logic. We are going to apply the logical rules in proving mathematical.
First Order Logic Lecture 2: Sep 9. This Lecture Last time we talked about propositional logic, a logic on simple statements. This time we will talk about.
CompSci 102 Discrete Math for Computer Science
Section 2.1. Section Summary Definition of sets Describing Sets Roster Method Set-Builder Notation Some Important Sets in Mathematics Empty Set and Universal.
Section 3.3: Mathematical Induction Mathematical induction is a proof technique that can be used to prove theorems of the form:  n  Z +,P(n) We have.
CompSci 102 Discrete Math for Computer Science March 1, 2012 Prof. Rodger Slides modified from Rosen.
1 Introduction to Abstract Mathematics Predicate Logic Instructor: Hayk Melikya Purpose of Section: To introduce predicate logic (or.
Week 4 - Monday.  What did we talk about last time?  Divisibility  Quotient-remainder theorem  Proof by cases.
CS 103 Discrete Structures Lecture 13 Induction and Recursion (1)
Chapter 2 With Question/Answer Animations. Section 2.1.
First Order Logic Lecture 3: Sep 13 (chapter 2 of the book)
Week 4 - Monday.  What did we talk about last time?  Rational numbers.
Mathematical Induction
CS104:Discrete Structures Chapter 2: Proof Techniques.
CSE 311: Foundations of Computing Fall 2013 Lecture 8: Proofs and Set theory.
Week 3 - Monday.  What did we talk about last time?  Predicate logic  Multiple quantifiers  Negating multiple quantifiers  Arguments with quantified.
CompSci 102 Discrete Math for Computer Science March 13, 2012 Prof. Rodger Slides modified from Rosen.
Week 4 - Friday.  What did we talk about last time?  Floor and ceiling  Proof by contradiction.
Introduction to Proofs
1 CMSC 250 Chapter 3, Number Theory. 2 CMSC 250 Introductory number theory l A good proof should have: –a statement of what is to be proven –"Proof:"
Week 4 - Wednesday.  What did we talk about last time?  Divisibility  Proof by cases.
Chapter 5. Section 5.1 Climbing an Infinite Ladder Suppose we have an infinite ladder: 1.We can reach the first rung of the ladder. 2.If we can reach.
Section 1.7. Definitions A theorem is a statement that can be shown to be true using: definitions other theorems axioms (statements which are given as.
CSE 311 Foundations of Computing I Lecture 8 Proofs Autumn 2012 CSE
1 Introduction to Abstract Mathematics Chapter 3: The Logic of Quantified Statements. Predicate Calculus Instructor: Hayk Melikya 3.1.
Section 2.1. Sets A set is an unordered collection of objects. the students in this class the chairs in this room The objects in a set are called the.
Methods of Proof Lecture 4: Sep 20 (chapter 3 of the book, except 3.5 and 3.8)
CS 173, Lecture B August 27, 2015 Tandy Warnow. Proofs You want to prove that some statement A is true. You can try to prove it directly, or you can prove.
Chapter 2 1. Chapter Summary Sets (This Slide) The Language of Sets - Sec 2.1 – Lecture 8 Set Operations and Set Identities - Sec 2.2 – Lecture 9 Functions.
Section 1.7. Section Summary Mathematical Proofs Forms of Theorems Direct Proofs Indirect Proofs Proof of the Contrapositive Proof by Contradiction.
Chapter 5 1. Chapter Summary  Mathematical Induction  Strong Induction  Recursive Definitions  Structural Induction  Recursive Algorithms.
The Foundations: Logic and Proofs
CS 2210:0001 Discrete Structures Logic and Proof
Direct Proof by Contraposition Direct Proof by Contradiction
Predicate Calculus Validity
Chapter 1: The Foundations: Logic and Proofs
The Foundations: Logic and Proofs
CS 220: Discrete Structures and their Applications
CS 220: Discrete Structures and their Applications
Foundations of Discrete Mathematics
Mathematical Induction
Presentation transcript:

CS 173, Lecture B August 27, 2015 Tandy Warnow

Proofs You want to prove that some statement A is true. You can try to prove it directly, or you can prove it indirectly… we’ll show examples of each type of proof.

Example of direct proof Theorem: Every odd integer is the difference of two perfect squares. (In other words, for all odd integers x, there exist integers y and z such that x=y 2 -z 2.) Proof. Since x is odd, there is an integer L such that x = 2L+1. Note that x = (L 2 +2L+1) – L 2 = (L+1) 2 – L 2. q.e.d.

Example of direct proof Theorem: Every odd integer is the difference of two perfect squares. (In other words, for all odd integers x, there exist integers y and z such that x=y 2 -z 2.) Proof. Since x is odd, there is an integer L such that x = 2L+1. Note that x = (L 2 +2L+1) – L 2 = (L+1) 2 – L 2. q.e.d.

A proof by contradiction Theorem: The square root of 7 is irrational. Proof: Let x=√7. We know that x is a real number. Hence, we will prove x is irrational by contradiction. If x is rational, then x = A/B, where A and B are integers and gcd(A,B)=1. Hence, A and B do not share any prime factors. Then x 2 = 7. Hence A 2 /B 2 = 7. Hence, A 2 = 7B 2. Hence 7 divides A 2. Hence 7 divides A. Hence 7 2 divides A 2 = 7B 2 Hence 7 divides B. Hence A and B are both divisible by 7, contradicting the assumptions above. Therefore x must not be rational. Since we know x must be real, it follows that x must instead be irrational. q.e.d

A proof by contradiction Theorem: The square root of 7 is irrational. Proof: Let x=√7. We know that x is a real number. Hence, we will prove x is irrational by contradiction. If x is rational, then x = A/B, where A and B are integers and gcd(A,B)=1. Hence, A and B do not share any prime factors. Then x 2 = 7. Hence A 2 /B 2 = 7. Hence, A 2 = 7B 2. Hence 7 divides A 2. Hence 7 divides A. Hence 7 2 divides A 2 = 7B 2 Hence 7 divides B. Hence A and B are both divisible by 7, contradicting the assumptions above. Therefore x must not be rational. Since we know x must be real, it follows that x must instead be irrational. q.e.d

A proof by contradiction Theorem: The square root of 7 is irrational. Proof: Let x=√7. We know that x is a real number. Hence, we will prove x is irrational by contradiction. If x is rational, then x = A/B, where A and B are integers and gcd(A,B)=1. Hence, A and B do not share any prime factors. Then x 2 = 7. Hence A 2 /B 2 = 7. Hence, A 2 = 7B 2. Hence 7 divides A 2. Hence 7 divides A. Hence 7 2 divides A 2 = 7B 2 Hence 7 divides B. Hence A and B are both divisible by 7, contradicting the assumptions above. Therefore x must not be rational. Since we know x must be real, it follows that x must instead be irrational. q.e.d

A proof by contradiction Theorem: The square root of 7 is irrational. Proof: Let x=√7. We know that x is a real number. Hence, we will prove x is irrational by contradiction. If x is rational, then x = A/B, where A and B are integers and gcd(A,B)=1. Hence, A and B do not share any prime factors. Then x 2 = 7. Hence A 2 /B 2 = 7. Hence, A 2 = 7B 2. Hence 7 divides A 2. Hence 7 divides A. Hence 7 2 divides A 2 = 7B 2 Hence 7 divides B. Hence A and B are both divisible by 7, contradicting the assumptions above. Therefore x must not be rational. Since we know x must be real, it follows that x must instead be irrational. q.e.d

A proof by contradiction Theorem: The square root of 7 is irrational. Proof: Let x=√7. We know that x is a real number. Hence, we will prove x is irrational by contradiction. If x is rational, then x = A/B, where A and B are integers and gcd(A,B)=1. Hence, A and B do not share any prime factors. Then x 2 = 7. Hence A 2 /B 2 = 7. Hence, A 2 = 7B 2. Hence 7 divides A 2. Hence 7 divides A. Hence 7 2 divides A 2 = 7B 2 Hence 7 divides B. Hence A and B are both divisible by 7, contradicting the assumptions above. Therefore x must not be rational. Since we know x must be real, it follows that x must instead be irrational. q.e.d

A proof by contradiction Theorem: The square root of 7 is irrational. Proof: Let x=√7. We know that x is a real number. Hence, we will prove x is irrational by contradiction. If x is rational, then x = A/B, where A and B are integers and gcd(A,B)=1. Hence, A and B do not share any prime factors. Then x 2 = 7. Hence A 2 /B 2 = 7. Hence, A 2 = 7B 2. Hence 7 divides A 2. Hence 7 divides A. Hence 7 2 divides A 2 = 7B 2 Hence 7 divides B. Hence A and B are both divisible by 7, contradicting the assumptions above. Therefore x must not be rational. Since we know x must be real, it follows that x must instead be irrational. q.e.d

A proof by contradiction Theorem: The square root of 7 is irrational. Proof: Let x=√7. We know that x is a real number. Hence, we will prove x is irrational by contradiction. If x is rational, then x = A/B, where A and B are integers and gcd(A,B)=1. Hence, A and B do not share any prime factors. Then x 2 = 7. Hence A 2 /B 2 = 7. Hence, A 2 = 7B 2. Hence 7 divides A 2. Hence 7 divides A. Hence 7 2 divides A 2 = 7B 2 Hence 7 divides B. Hence A and B are both divisible by 7, contradicting the assumptions above. Therefore x must not be rational. Since we know x must be real, it follows that x must instead be irrational. q.e.d

A proof by contradiction Theorem: The square root of 7 is irrational. Proof: Let x=√7. We know that x is a real number. Hence, we will prove x is irrational by contradiction. If x is rational, then x = A/B, where A and B are integers and gcd(A,B)=1. Hence, A and B do not share any prime factors. Then x 2 = 7. Hence A 2 /B 2 = 7. Hence, A 2 = 7B 2. Hence 7 divides A 2. Hence 7 divides A. Hence 7 2 divides A 2 = 7B 2 Hence 7 divides B 2. Hence 7 divides B. Hence A and B are both divisible by 7, contradicting the assumptions above. Therefore x must not be rational. Since we know x must be real, it follows that x must instead be irrational. q.e.d

A proof by contradiction Theorem: The square root of 7 is irrational. Proof: Let x=√7. We know that x is a real number. Hence, we will prove x is irrational by contradiction. If x is rational, then x = A/B, where A and B are integers and gcd(A,B)=1. Hence, A and B do not share any prime factors. Then x 2 = 7. Hence A 2 /B 2 = 7. Hence, A 2 = 7B 2. Hence 7 divides A 2. Hence 7 divides A. Hence 7 2 divides A 2 = 7B 2 Hence 7 divides B 2. Hence 7 divides B. Hence A and B are both divisible by 7, contradicting the assumptions above. Therefore x must not be rational. Since we know x must be real, it follows that x must instead be irrational. q.e.d

A proof by contradiction Theorem: The square root of 7 is irrational. Proof: Let x=√7. We know that x is a real number. Hence, we will prove x is irrational by contradiction. If x is rational, then x = A/B, where A and B are integers and gcd(A,B)=1. Hence, A and B do not share any prime factors. Then x 2 = 7. Hence A 2 /B 2 = 7. Hence, A 2 = 7B 2. Hence 7 divides A 2. Hence 7 divides A. Hence 7 2 divides A 2 = 7B 2 Hence 7 divides B 2. Hence 7 divides B. Hence A and B are both divisible by 7, contradicting the assumptions above. Therefore x must not be rational. Since we know x must be real, it follows that x must instead be irrational. q.e.d

Brief introduction to sets A set S is just a collection of objects. Some sets are finite (e.g., {1,2,3,5}) and some are infinite (e.g., the set of integers, the set of functions from the integers to the open interval (0,1), etc.). We can specify a set explicitly, as in {1,2,3,5}, or implicitly, as in the “set-builder notation”: {x in Z: 0 < x < 6, x != 4}. These are the same set, represented differently. We can also write {f: Z -> (0,1)} to denote the set of functions from the set of integers (Z) to the open interval (0,1).

Brief introduction to sets Notation: – For a set A, and element x of A, we can write x ε A And in latex we write “$x \in A$” – A set B where all elements of B are elements of A is called a “subset” of A. In latex we write this as $B \subseteq A$ – Note therefore that if x ε A then {x} is a subset of A.

Another proof by contradiction Theorem: Let A be a subset of the integers that satisfies the following constraint: – x ε A => x+1 ε A Then if A is finite, it follows that A is the empty set. Proof: Suppose A is not the empty set but is finite. Then A = {a 1, a 2, …, a n } for some n. Let a* be the largest element in A. Then by assumption, b= a*+1 is an element of A. But then b>a*, contradicting our hypothesis. Hence, A must not be finite.

Another proof by contradiction Theorem: Let A be a subset of the integers that satisfies the following constraint: – x ε A => x+1 ε A Then if A is finite, it follows that A is the empty set. Proof: Suppose A is not the empty set but is finite. Then A = {a 1, a 2, …, a n } for some n. Let a* be the largest element in A. Then by assumption, b= a*+1 is an element of A. But then b>a*, contradicting our hypothesis. Hence, A must not be finite.

Another proof by contradiction Theorem: Let A be a subset of the integers that satisfies the following constraint: – x ε A => x+1 ε A Then if A is finite, it follows that A is the empty set. Proof: Suppose A is not the empty set but is finite. Then A = {a 1, a 2, …, a n } for some n. Let a* be the largest element in A. Then by assumption, b= a*+1 is an element of A. But then b>a*, contradicting our hypothesis. Hence, A must not be finite.

Another proof by contradiction Theorem: Let A be a subset of the integers that satisfies the following constraint: – x ε A => x+1 ε A Then if A is finite, it follows that A is the empty set. Proof: Suppose A is not the empty set but is finite. Then A = {a 1, a 2, …, a n } for some n. Let a* be the largest element in A. Then by assumption, b= a*+1 is an element of A. But then b>a*, contradicting our hypothesis. Hence, A must not be finite.

Another proof by contradiction Theorem: Let A be a subset of the integers that satisfies the following constraint: – x ε A => x+1 ε A Then if A is finite, it follows that A is the empty set. Proof: Suppose A is not the empty set but is finite. Then A = {a 1, a 2, …, a n } for some n. Let a* be the largest element in A. Then by assumption, b= a*+1 is an element of A. But then b>a*, contradicting our hypothesis. Hence, A must not be finite.

Another proof by contradiction Theorem: Let A be a subset of the integers that satisfies the following constraint: – x ε A => x+1 ε A Then if A is finite, it follows that A is the empty set. Proof: Suppose A is not the empty set but is finite. Then A = {a 1, a 2, …, a n } for some n. Let a* be the largest element in A. Then by assumption, b= a*+1 is an element of A. But then b>a*, contradicting our hypothesis. Hence, A must not be finite.

Another proof by contradiction Theorem: Let A be a subset of the integers that satisfies the following constraint: – x ε A => x+1 ε A Then if A is finite, it follows that A is the empty set. Proof. We have shown that if A is not the empty set, then A cannot be finite. We now want to show that it is possible for A to be the empty set.

Another proof by contradiction Theorem: Let A be a subset of the integers that satisfies the following constraint: – x ε A => x+1 ε A Then if A is finite, it follows that A is the empty set. Proof. What happens if A is the empty set? Does A satisfy the constraint above? Yes!!

Another proof by contradiction Theorem: Let A be a subset of the integers that satisfies the following constraint: – x ε A => x+1 ε A Then if A is finite, it follows that A is the empty set. Proof. The constraint given above is the statement x ε A => x+1 ε A This is the same thing as saying “whenever x ε A, it follows that x+1 ε A”. Or, equivalent, “for all elements x of A, the real number x+1 is an element of A”. Or, “if x is an element of A, then x+1 is an element of A”. The only way this constraint can be violated is if there is *some* element x of A, where x+1 is not an element of A. If A is the empty set, then this constraint can never be violated. Note also – an “IF X THEN Y” statement cannot be False when X is False. The only way it can be false is if X is true and Y is false.

A logic problem Suppose we are in a city where there are two types of people – those who always tell the truth, and those who always lie. We meet two people, Sally and Tom, and we don’t know if they are both liars, both truth tellers, or one of each. – Sally says: “Exactly one of us is telling the truth.” – Tom says: “Sally is telling the truth.” Determine who is telling the truth and who is lying (and prove your answer is correct).

Homework and discussion section Homework (due Monday, 10 PM, on Moodle): – Prove that the square root of 5 is irrational – Prove that there is no largest real number less than 1 Discussion section problems – Prove that the square root of 11 is irrational – Prove that there is no smallest real number greater than 1 – Suppose A is a finite subset of the real numbers that satisfies: For all a in A, 2a is also an element of A. Find all the sets A that satisfy this constraint, and prove that there are no others. (Hint: there are only two such sets.) NOTE: Homeworks are easier than discussion section problems. But over time, your ability to solve harder problems will increase, and then the homeworks will also become more challenging!

Logic Logical variables Propositions (statements that are true or false) Predicates (statements that are true or false, but depend on the variables) Quantifiers (for all, there exists) AND, OR, XOR, IF A THEN B, or A -> B IFF = IF AND ONLY IF NEGATION

A AND B A and B are logical statements – each can be true or false, but only one A AND B is true if and only if both are true W = “Today is Friday” X = “We are in Chicago” Y = “Today is Thursday” Z = “Barack Obama is the president of the USA” Which of the following statements are true? Y AND Z (two true statements) X AND Y (one false, one true) X AND Z (one false, one true) W AND X (two false statements)

A OR B A and B are logical statements – each can be true or false, but only one A OR B is true if and only if one or both are true (i.e., if and only if at least one is true) W = “Today is Friday” X = “We are in Chicago” Y = “Today is Thursday” Z = “Barack Obama is the president of the USA” Which of the following statements are true? Y OR Z (two true statements) X OR Y (one false, one true) X OR Z (one false, one true) W OR X (two false statements)

A XOR B A and B are logical statements – each can be true or false, but only one A XOR B is true if and only if exactly one of A and B is true This is the same as the “exclusive OR” W = “Today is Friday” X = “We are in Chicago” Y = “Today is Thursday” Z = “Barack Obama is the president of the USA” Which of the following statements are true? Y XOR Z (two true statements) X XOR Y (one false, one true) X XOR Z (one false, one true) W XOR X (two false statements)

IF A THEN B A and B are logical statements – each can be true or false, but only one IF A THEN B is true if and only if… Think about it.

IF A THEN B A and B are logical statements – each can be true or false, but only one IF A THEN B is true if and only if… Think about it.

IF A THEN B IF A THEN B is the same as – “whenever A, then always B” – “Not possible for B to be false if A is true” So, how would you *disprove* “If A THEN B”?

IF A THEN B IF A THEN B is the same as – “whenever A, then always B” – “Not possible for B to be false if A is true” To disprove “IF A THEN B”, you would have to have A being True but B being false. Example: to disprove “If x=8 THEN y=5” show that “x=8” and “y != 5” is possible.

IF A THEN B A and B are logical statements – each can be true or false, but only one IF A THEN B is true if and only if … (A is false) OR (A is true and B is true) W = “Today is Friday” X = “We are in Chicago” Y = “Today is Thursday” Z = “Barack Obama is the president of the USA” Which of the following statements are true? IF X THEN Z (two true statements) IF X THEN Z (X false, Z true) IF Z THEN X (X false, Z true) IF W THEN X (two false statements)

IF A THEN B A and B are logical statements – each can be true or false, but only one IF A THEN B is true if and only if … (A is false) OR (A is true and B is true) W = “Today is Friday” X = “We are in Chicago” Y = “Today is Thursday” Z = “Barack Obama is the president of the USA” Which of the following statements are true? IF X THEN Z (two true statements) IF X THEN Z (X false, Z true) IF Z THEN X (X false, Z true) IF W THEN X (two false statements)

IF A THEN B A and B are logical statements – each can be true or false, but only one IF A THEN B is true if and only if … (A is false) OR (A is true and B is true) W = “Today is Friday” X = “We are in Chicago” Y = “Today is Thursday” Z = “Barack Obama is the president of the USA” Which of the following statements are true? IF Y THEN Z (both true statements) IF X THEN Z (X false, Z true) IF Z THEN X (X false, Z true) IF W THEN X (two false statements)

IF A THEN B Which of the following is true? 1.IF Illinois is in the USA, THEN 2=1+1 2.IF Illinois is in the USA, THEN 2=3 3.IF 2=3 THEN Illinois is in the USA 4.IF 2=3 THEN Illinois is not in the USA 5.If (2=3 OR Illinois is in the USA) THEN 2=3 6.If (2=3 OR Illinois is in the USA) then Illinois is in the USA 7.If (2=3 AND Illinois is in the USA) then 2=3

quantifiers “For all” (written as an upside-down “A”) “There exists” (written as a backwards “E”) The order matters! Think about the following two statements (differing only in the order of the quantifiation): For all integers x, there exists an integer y such that x≤y There exists an integer y such that for all integers x, x≤y

quantifiers For all integers x, there exists an integer y such that x≤y There exists an integer y such that for all integers x, x≤y

quantifiers For all integers x, there exists an integer y such that x<y There exists an integer y such that for all integers x, x<y The first one is true! Proof: Let x be an arbitrary integer. Then let y=x+1. Clearly y is an integer, and x≤y. (For that matter, setting y=x also works!) Q.E.D.

quantifiers For all integers x, there exists an integer y such that x≤y There exists an integer y such that for all integers x other than y, x≤y The second statement is false! Proof (by contradiction). Suppose the second statement is true….

quantifiers There exists an integer y such that for all integers x, x≤y The second statement is false! Proof (by contradiction). Suppose the second statement is true…. Then there is an integer y such that for all integers x, x≤y. Let x=y+1. Note that x is an integer, and that x>y. Hence, it is not the case that x≤y. This contradicts our hypothesis, and so the claim is false. Q.E.D.

Problems with written English English is not as precise as mathematics, so be careful about how you interpret it. Better to use mathematical notation *and* English. What does the following statements mean? – All dogs are not stupid Is this the same as “Not all dogs are stupid”? Or just “all dogs are smart”? (If not being stupid means being smart.) How about – All students in this class are not in Africa. – All students in this class are not women. Try to be careful with how you write English – not just in this class, of course.

More logic: Negation Negation – what is the opposite of a statement? What is the negation of (A OR B)? – NOT A AND NOT B What is the negation of (A AND B)? – NOT A OR NOT B What is the negation of (IF A THEN B)? – A AND NOT B

More logic: Negation Negation – what is the opposite of a statement? What is the negation of (A OR B)? – NOT A AND NOT B What is the negation of (A AND B)? – NOT A OR NOT B What is the negation of (IF A THEN B)? – A AND NOT B

More logic: Negation Negation – what is the opposite of a statement? What is the negation of (A OR B)? – NOT A AND NOT B What is the negation of (A AND B)? – NOT A OR NOT B What is the negation of (IF A THEN B)? – A AND NOT B

More logic: Negation Negation – what is the opposite of a statement? What is the negation of (A OR B)? – NOT A AND NOT B What is the negation of (A AND B)? – NOT A OR NOT B What is the negation of (IF A THEN B)? – A AND NOT B

More logic: Negation Negation – what is the opposite of a statement? What is the negation of (A OR B)? – NOT A AND NOT B What is the negation of (A AND B)? – NOT A OR NOT B What is the negation of (IF A THEN B)? – A AND NOT B

More logic: Negation Negation – what is the opposite of a statement? What is the negation of (A OR B)? – NOT A AND NOT B What is the negation of (A AND B)? – NOT A OR NOT B What is the negation of (IF A THEN B)? – A AND NOT B

More logic Suppose A is a finite subset of the real numbers that satisfies – For all a in A, the number 2a is also in A What can A be? (Note – you cannot change the meaning of multiplication.)

More logic Henry and Allen are each of them either always lying or always telling the truth (but that doesn’t mean both of them are liars or both of them are truth tellers… there could be one of each). Henry says “Allen is a truth teller” Allen says “Only one of us is a truth teller” Is either a truth teller? If so, who?