1 Lecture 04: SQL Wednesday, January 11, 2006. 2 Outline Two Examples Nulls (6.1.6) Outer joins (6.3.8) Database Modifications (6.5)

Slides:



Advertisements
Similar presentations
SQL: The Query Language Part 2
Advertisements

1 Lecture 4: Advanced SQL. 2 INTERSECT and EXCEPT: (missing from MySQL) (SELECT R.A, R.B FROM R) INTERSECT (SELECT S.A, S.B FROM S) (SELECT R.A, R.B FROM.
SQL Introduction Standard language for querying and manipulating data Structured Query Language Many standards out there: SQL92, SQL2, SQL3. Vendors support.
CSE 544 Constraints Lecture #3 Friday, January 13, 2011 Dan Suciu , Winter
1 Lecture 03: Advanced SQL. 2 Outline Unions, intersections, differences Subqueries, Aggregations, NULLs Modifying databases, Indexes, Views Reading:
1 Introduction to Database Systems CSE 444 Lecture 05: Views, Constraints April 9, 2008.
M.P. Johnson, DBMS, Stern/NYU, Spring C : Database Management Systems Lecture #11 M.P. Johnson Stern School of Business, NYU Spring, 2008.
SQL April 25 th, Agenda Grouping and aggregation Sub-queries Updating the database Views More on views.
1 Lecture 06: SQL Friday, January 14, Outline Indexes Defining Views (6.7) Constraints (Chapter 7) We begin E/R diagrams (Chapter 2)
1 Lecture 05: SQL Wednesday, October 8, Outline Outer joins (6.3.8) Database Modifications (6.5) Defining Relation Schema in SQL (6.6) Indexes.
Matthew P. Johnson, OCL2, CISDD CUNY, January OCL2 Oracle 10g: SQL & PL/SQL Session #5 Matthew P. Johnson CISDD, CUNY January, 2005.
1 INTERSECT and EXCEPT: (may no be in MySQL) (SELECT R.A, R.B FROM R) INTERSECT (SELECT S.A, S.B FROM S) (SELECT R.A, R.B FROM R) INTERSECT (SELECT S.A,
3) Student (ufid, major) Quiz(Q_num, point_pos) Q_score(q_num,ufid,points_scored) (in TRC) A) Which quizzes did a “CE” major score 100% on? { a[Q_num]:
M.P. Johnson, DBMS, Stern/NYU, Spring C : Database Management Systems Lecture #15 M.P. Johnson Stern School of Business, NYU Spring, 2005.
M.P. Johnson, DBMS, Stern/NYU, Sp20041 C : Database Management Systems Lecture #12 Matthew P. Johnson Stern School of Business, NYU Spring, 2004.
End of SQL XML April 22 th, Null Values If x=Null then 4*(3-x)/7 is still NULL If x=Null then x=“Joe” is UNKNOWN Three boolean values: –FALSE =
Correlated Queries SELECT title FROM Movie AS Old WHERE year < ANY (SELECT year FROM Movie WHERE title = Old.title); Movie (title, year, director, length)
CSE544: SQL Monday 3/27 and Wednesday 3/29, 2006.
+ From Relational Algebra to SQL W2013 CSCI 2141.
Lecture 3: Introduction to SQL September 29, 2014.
Exercises Product ( pname, price, category, maker) Purchase (buyer, seller, store, product) Company (cname, stock price, country) Person( per-name, phone.
1 Lecture 4: More SQL Monday, January 13th, 2003.
1 Lecture 7: End of Normal Forms Outerjoins, Schema Creation and Views Wednesday, January 28th, 2004.
SQL April 22 th, Agenda Union, intersections Sub-queries Modifying the database Views Modifying views Reusing views.
More SQL: Complex Queries, Triggers, Views, and Schema Modification UMM AL QURA UNIVERSITY College of Computer Dr. Ali Al Najjar 1.
1 Lecture 6: Views Friday, January 17th, Updating Views How can I insert a tuple into a table that doesn’t exist? Employee(ssn, name, department,
1 SQL Constraints and Programming. 2 Agenda Constraints in SQL Systems aspects of SQL.
Lectures 2&3: Introduction to SQL. Lecture 2: SQL Part I Lecture 2.
SQL SQL Review. SQL Introduction Standard language for querying and manipulating data Structured Query Language Many standards out there: ANSI SQL, SQL92.
NULLs & Outer Joins Objectives of the Lecture : To consider the use of NULLs in SQL. To consider Outer Join Operations, and their implementation in SQL.
SQL. SQL Introduction Standard language for querying and manipulating data Structured Query Language Many standards out there: ANSI SQL, SQL92 (a.k.a.
1 SQL Constraints and Programming. 2 Agenda Constraints in SQL Systems aspects of SQL.
1 SQL Additional Notes. 2  1 Group and Aggregation*  2 Execution Order*  3 Join*  4 Find the maximum  5 Line Format SQL Additional Notes *partially.
1 Introduction to Database Systems CSEP544 Lecture #1 January 5, 2007.
1 Introduction to Database Systems CSE 444 Lecture 04: SQL April 7, 2008.
1 Lecture 5: Outerjoins, Schema Creation and Views Wednesday, January 15th, 2003.
Aggregation SELECT Sum(price) FROM Product WHERE manufacturer=“Toyota” SQL supports several aggregation operations: SUM, MIN, MAX, AVG, COUNT Except COUNT,
1 Lecture 06 Data Modeling: E/R Diagrams Wednesday, January 18, 2006.
1 Lecture 05: SQL Wednesday, October 8, Outline Database Modifications (6.5) Defining Relation Schema in SQL (6.6) Indexes Defining Views (6.7)
SQL. SQL Introduction Standard language for querying and manipulating data Structured Query Language Many standards out there: ANSI SQL, SQL92 (a.k.a.
More SQL: Complex Queries, Triggers, Views, and Schema Modification
SQL.
Lecture 05: SQL Wednesday, January 12, 2005.
Cours 7: Advanced SQL.
Lecture 04: SQL Monday, January 10, 2005.
Modifying the Database
Monday 3/27 and Wednesday 3/29, 2006
Class 2 Relational Data Languages
Introduction to Database Systems CSE 444 Lecture 04: SQL
Cse 344 January 12th –joins.
March 30th – intro to joins
Introduction to Database Systems CSE 444 Lecture 03: SQL
Lecture 4: Advanced SQL – Part II
Lecture 06: SQL Systems Aspects
Introduction to Database Systems CSE 444 Lecture 03: SQL
CSE544 SQL Wednesday, March 31, 2004.
SQL Introduction Standard language for querying and manipulating data
Lecture 12: SQL Friday, October 20, 2000.
Lectures 3: Introduction to SQL Part II
Lectures 7: Introduction to SQL 6
Lecture 4: SQL Thursday, January 11, 2001.
Class 2 Relational Data Languages
Lecture 06: SQL Monday, October 11, 2004.
Lecture 4: SQL Wednesday, April 10, 2002.
CSE544 SQL Monday, April 5, 2004.
Lecture 04: SQL Monday, October 6, 2003.
Lecture 05: SQL Wednesday, October 9, 2002.
Lecture 14: SQL Wednesday, October 31, 2001.
Presentation transcript:

1 Lecture 04: SQL Wednesday, January 11, 2006

2 Outline Two Examples Nulls (6.1.6) Outer joins (6.3.8) Database Modifications (6.5)

3 Two Examples Store(sid, sname) Product(pid, pname, price, sid) Find all stores that sell only products with price > 100 same as: Find all stores s.t. all their products have price > 100)

4 SELECT Store.name FROM Store, Product WHERE Store.sid = Product.sid GROUP BY Store.sid, Store.name HAVING 100 < min(Product.price) SELECT Store.name FROM Store, Product WHERE Store.sid = Product.sid GROUP BY Store.sid, Store.name HAVING 100 < min(Product.price) SELECT Store.name FROM Store WHERE Store.sid NOT IN (SELECT Product.sid FROM Product WHERE Product.price <= 100) SELECT Store.name FROM Store WHERE Store.sid NOT IN (SELECT Product.sid FROM Product WHERE Product.price <= 100) SELECT Store.name FROM Store WHERE 100 < ALL (SELECT Product.price FROM product WHERE Store.sid = Product.sid) SELECT Store.name FROM Store WHERE 100 < ALL (SELECT Product.price FROM product WHERE Store.sid = Product.sid) Almost equivalent… Why both ?

5 Two Examples Store(sid, sname) Product(pid, pname, price, sid) For each store, find its most expensive product

6 Two Examples SELECT Store.sname, max(Product.price) FROM Store, Product WHERE Store.sid = Product.sid GROUP BY Store.sid, Store.sname SELECT Store.sname, max(Product.price) FROM Store, Product WHERE Store.sid = Product.sid GROUP BY Store.sid, Store.sname SELECT Store.sname, x.pname FROM Store, Product x WHERE Store.sid = x.sid and x.price >= ALL (SELECT y.price FROM Product y WHERE Store.sid = y.sid) SELECT Store.sname, x.pname FROM Store, Product x WHERE Store.sid = x.sid and x.price >= ALL (SELECT y.price FROM Product y WHERE Store.sid = y.sid) This is easy but doesn’t do what we want: Better: But may return multiple product names per store

7 Two Examples SELECT Store.sname, max(x.pname) FROM Store, Product x WHERE Store.sid = x.sid and x.price >= ALL (SELECT y.price FROM Product y WHERE Store.sid = y.sid) GROUP BY Store.sname SELECT Store.sname, max(x.pname) FROM Store, Product x WHERE Store.sid = x.sid and x.price >= ALL (SELECT y.price FROM Product y WHERE Store.sid = y.sid) GROUP BY Store.sname Finally, choose some pid arbitrarily, if there are many with highest price:

8 NULLS in SQL Whenever we don’t have a value, we can put a NULL Can mean many things: –Value does not exists –Value exists but is unknown –Value not applicable –Etc. The schema specifies for each attribute if can be null (nullable attribute) or not How does SQL cope with tables that have NULLs ?

9 Null Values If x= NULL then 4*(3-x)/7 is still NULL If x= NULL then x=“Joe” is UNKNOWN In SQL there are three boolean values: FALSE = 0 UNKNOWN = 0.5 TRUE = 1

10 Null Values C1 AND C2 = min(C1, C2) C1 OR C2 = max(C1, C2) NOT C1 = 1 – C1 Rule in SQL: include only tuples that yield TRUE SELECT * FROM Person WHERE (age < 25) AND (height > 6 OR weight > 190) SELECT * FROM Person WHERE (age < 25) AND (height > 6 OR weight > 190) E.g. age=20 heigth=NULL weight=200

11 Null Values Unexpected behavior: Some Persons are not included ! SELECT * FROM Person WHERE age = 25 SELECT * FROM Person WHERE age = 25

12 Null Values Can test for NULL explicitly: –x IS NULL –x IS NOT NULL Now it includes all Persons SELECT * FROM Person WHERE age = 25 OR age IS NULL SELECT * FROM Person WHERE age = 25 OR age IS NULL

13 Outerjoins Explicit joins in SQL = “inner joins”: Product(name, category) Purchase(prodName, store) SELECT Product.name, Purchase.store FROM Product JOIN Purchase ON Product.name = Purchase.prodName SELECT Product.name, Purchase.store FROM Product JOIN Purchase ON Product.name = Purchase.prodName SELECT Product.name, Purchase.store FROM Product, Purchase WHERE Product.name = Purchase.prodName SELECT Product.name, Purchase.store FROM Product, Purchase WHERE Product.name = Purchase.prodName Same as: But Products that never sold will be lost !

14 Outerjoins Left outer joins in SQL: Product(name, category) Purchase(prodName, store) SELECT Product.name, Purchase.store FROM Product LEFT OUTER JOIN Purchase ON Product.name = Purchase.prodName SELECT Product.name, Purchase.store FROM Product LEFT OUTER JOIN Purchase ON Product.name = Purchase.prodName

15 NameCategory Gizmogadget CameraPhoto OneClickPhoto ProdNameStore GizmoWiz CameraRitz CameraWiz NameStore GizmoWiz CameraRitz CameraWiz OneClickNULL ProductPurchase

16 Application Compute, for each product, the total number of sales in ‘September’ Product(name, category) Purchase(prodName, month, store) SELECT Product.name, count(*) FROM Product, Purchase WHERE Product.name = Purchase.prodName and Purchase.month = ‘September’ GROUP BY Product.name SELECT Product.name, count(*) FROM Product, Purchase WHERE Product.name = Purchase.prodName and Purchase.month = ‘September’ GROUP BY Product.name What’s wrong ?

17 Application Compute, for each product, the total number of sales in ‘September’ Product(name, category) Purchase(prodName, month, store) SELECT Product.name, count(*) FROM Product LEFT OUTER JOIN Purchase ON Product.name = Purchase.prodName and Purchase.month = ‘September’ GROUP BY Product.name SELECT Product.name, count(*) FROM Product LEFT OUTER JOIN Purchase ON Product.name = Purchase.prodName and Purchase.month = ‘September’ GROUP BY Product.name Now we also get the products who sold in 0 quantity

18 Outer Joins Left outer join: –Include the left tuple even if there’s no match Right outer join: –Include the right tuple even if there’s no match Full outer join: –Include the both left and right tuples even if there’s no match

19 Modifying the Database Three kinds of modifications Insertions Deletions Updates Sometimes they are all called “updates”

20 Insertions General form: Missing attribute  NULL. May drop attribute names if give them in order. INSERT INTO R(A1,…., An) VALUES (v1,…., vn) INSERT INTO Purchase(buyer, seller, product, store) VALUES (‘Joe’, ‘Fred’, ‘wakeup-clock-espresso-machine’, ‘The Sharper Image’) INSERT INTO Purchase(buyer, seller, product, store) VALUES (‘Joe’, ‘Fred’, ‘wakeup-clock-espresso-machine’, ‘The Sharper Image’) Example: Insert a new purchase to the database:

21 Insertions INSERT INTO PRODUCT(name) SELECT DISTINCT Purchase.product FROM Purchase WHERE Purchase.date > “10/26/01” INSERT INTO PRODUCT(name) SELECT DISTINCT Purchase.product FROM Purchase WHERE Purchase.date > “10/26/01” The query replaces the VALUES keyword. Here we insert many tuples into PRODUCT

22 Insertion: an Example prodName is foreign key in Product.name Suppose database got corrupted and we need to fix it: namelistPricecategory gizmo100gadgets prodNamebuyerNameprice cameraJohn200 gizmoSmith80 cameraSmith225 Task: insert in Product all prodNames from Purchase Product Product(name, listPrice, category) Purchase(prodName, buyerName, price) Product(name, listPrice, category) Purchase(prodName, buyerName, price) Purchase

23 Insertion: an Example INSERT INTO Product(name) SELECT DISTINCT prodName FROM Purchase WHERE prodName NOT IN (SELECT name FROM Product) INSERT INTO Product(name) SELECT DISTINCT prodName FROM Purchase WHERE prodName NOT IN (SELECT name FROM Product) namelistPricecategory gizmo100Gadgets camera--

24 Insertion: an Example INSERT INTO Product(name, listPrice) SELECT DISTINCT prodName, price FROM Purchase WHERE prodName NOT IN (SELECT name FROM Product) INSERT INTO Product(name, listPrice) SELECT DISTINCT prodName, price FROM Purchase WHERE prodName NOT IN (SELECT name FROM Product) namelistPricecategory gizmo100Gadgets camera200- camera ??225 ??- Depends on the implementation

25 Deletions DELETE FROM PURCHASE WHERE seller = ‘Joe’ AND product = ‘Brooklyn Bridge’ DELETE FROM PURCHASE WHERE seller = ‘Joe’ AND product = ‘Brooklyn Bridge’ Factoid about SQL: there is no way to delete only a single occurrence of a tuple that appears twice in a relation. Example:

26 Updates UPDATE PRODUCT SET price = price/2 WHERE Product.name IN (SELECT product FROM Purchase WHERE Date =‘Oct, 25, 1999’); UPDATE PRODUCT SET price = price/2 WHERE Product.name IN (SELECT product FROM Purchase WHERE Date =‘Oct, 25, 1999’); Example: