Gases Dr. Chin Chu River Dell Regional High School

Slides:



Advertisements
Similar presentations
Gases.
Advertisements

Gases.
Gases Notes.
Not so long ago, in a chemistry lab far far away… May the FORCE/area be with you.
Gases Chapters 12.1 and 13.
Not so long ago, in a chemistry lab far far away… May the FORCE/area be with you.
Chapter 10 Gases No…not that kind of gas. Kinetic Molecular Theory of Gases Kinetic Molecular Theory of Gases – Based on the assumption that gas molecules.
Gas Laws.
Not so long ago, in a chemistry lab far far away… May the FORCE/area be with you.
Energy and Gases Kinetic energy: is the energy of motion. Potential Energy: energy of Position or stored energy Exothermic –energy is released by the substance.
Gases. Gases - Concepts to Master What unit of measurement is used for temperature when solving gas law problems? Why? Summarize the Kinetic Molecular.
Chapter 13: Gases. What Are Gases? Gases have mass Gases have mass.
Chapter 14 – Gases Kinetic Molecular Theory (KMT) Defn – describes the behavior of gases in terms of particle motion Defn – describes the behavior of.
Gas Laws.
Gases Notes A. Physical Properties: 1.Gases have mass. The density is much smaller than solids or liquids, but they have mass. (A full balloon weighs.
GAS LAWS. Behavior of Gases Gases can expand to fill their container Gases can be compressed –Because of the space between gas particles Compressibility:
Gases Kinetic Molecular Theory of Gases. A gas consists of small particles (atoms/molecules) that move randomly with rapid velocities Further Information.
Gas Laws. Gas Pressure ____________ is defined as force per unit area. Gas particles exert pressure when they ____________ with the walls of their container.
CH 11 – Physical Characteristics of Gases: Objectives Describe how the kinetic-molecular theory of matter explains ideal gases Differentiate between ideal.
Gases
Gases. States of Matter Solid: Definite Shape Definite Volume Incompressible Liquid: Indefinite Shape Definite Volume Not Easily Compressed Gas: Indefinite.
Gases.
Chapter 12 Physical Characteristics of Gases. Kinetic Molecular Theory  Particles of matter are ALWAYS in motion  Volume of individual particles is.
Gas Laws.
GAS LAWS. Properties of Gases  Composed of randomly scattered particles  No definite _________ or ___________  Spread out to fill the space of their.
1 CHAPTER 11 Gases and their Properties. 2 Density Comparison The density of gases is much less than that of solids or liquids: compoundSolid density.
Unit 5: Gases and Gas Laws. Kinetic Molecular Theory  Particles of matter are ALWAYS in motion  Volume of individual particles is  zero.  Collisions.
Gas!!! It’s Everywhere!!!!.
GASES and the Kinetic Molecular Theory A.Gas particles DO NOT attract or repel each other B.Gas particles are much smaller than the distances between them.
Chapter 13: Gases. What Are Gases? Gases have mass Gases have mass Much less compared to liquids and solids Much less compared to liquids and solids.
Nature of Gases 1 – gases have mass (low density) 2 – particles glide past one another (flow) - fluid 3 – easily compressed 4 – fill containers completely.
You can predict how pressure, volume, temperature, and number of gas particles are related to each other based on the molecular model of a gas.
Gas Notes I. Let’s look at some of the Nature of Gases: 1. Expansion – gases do NOT have a definite shape or volume. 2. Fluidity – gas particles glide.
Gases Ch.10 and 11. Kinetic-Molecular Theory 1.Gases consist of very small particles that are far apart Most particles are molecules Volume of particles.
I. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
Gases. Elements that exist as gases at 25 0 C and 1 atmosphere.
Gas Laws Boyle ’ s Law Charles ’ s law Gay-Lussac ’ s Law Avogadro ’ s Law Dalton ’ s Law Henry ’ s Law 1.
Behavior of Gases  Gases behave much differently than liquids and solids and thus, have different laws.  Because gas molecules have no forces keeping.
Review of Gases. The nature of gases… Gases all have common physical properties: 1)Mass 2)Easily compressible 3)Take the shape of their container 4)Can.
Chapter 10: Gases.
Note: You must memorize STP and the gas laws!!. The Kinetic Molecular Theory states that gas particles are ____________ and are separated from one another.
I. Physical Properties Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random,
Ch. 5 Gases!!!!!. Pressure conversions O Pressure – force per unit area O Can be measured in atm, mmHg, torr, kPa, psi O 1atm =760mmHg = 760torr = 101.3kPa=
KINETIC MOLECULAR THEORY Physical Properties of Gases: Gases have mass Gases are easily compressed Gases completely fill their containers (expandability)
Unit 5: Gases and Gas Laws. Kinetic Molecular Theory  Particles of matter are ALWAYS in motion  Volume of individual particles is  zero.  Collisions.
Properties  Gases take the shape and volume of their container  Weak intermolecular forces  Volume is dependent on temperature and pressure Increase.
Gases. Kinetic Theory of Gases Explains Gas behavior: 4 parts: 1) Gas particles do not attract or repel each other (no I.M. forces).
Gases. Ideal Gases Ideal gases are imaginary gases that perfectly fit all of the assumptions of the kinetic molecular theory.  Gases consist of tiny.
GAS LAWS. The Nature of Gases  Gases expand to fill their containers  Gases are fluid – they flow  Gases have low density  1/1000 the density of the.
The Property of Gases – Kinetic Molecular Theory explains why gases behave as they do
 Gas particles are much smaller than the distance between them We assume the gas particles themselves have virtually no volume  Gas particles do not.
THE GAS LAWS AVOGADRO’S, BOYLE’S, CHARLES’S, GAY-LUSSAC’S AND COMBINED GAS LAWS.
GASES Chapter 12 in your text book. KINETIC-MOLECULAR THEORY OF GASES Gas particles are in constant random and rapid motion. The space between gas molecules.
Chemistry Chapter 5 Gases Dr. Daniel Schuerch. Gas Pressure Gas pressure is the result of simultaneous collisions of billions of rapidly moving particles.
Gas Laws Kinetic Theory assumptions Gas particles do not attract or repel Small particles in constant random motion Elastic collisions All gases have the.
Gas Laws. Phases of Matter SOLID Definite Shape Definite Volume LIQUID Shape varies depending on container Definite Volume GAS Takes on the shape and.
V. Combined and Ideal Gas Law
Unit 5: Gases and Gas Laws
Gases.
Physical Characteristics of Gases
Gases I. Physical Properties.
Gas laws.
Chapter 10 Gases No…not that kind of gas.
Particles subject to Pressure, Temperature, Moles and Volume
Gases.
Ch Gases I. Physical Properties.
Gas Laws 1.
Gases Chapters 10 & 11.
TEKS 9A & 9C Gas Laws.
GASES and the Kinetic Molecular Theory
Presentation transcript:

Gases Dr. Chin Chu River Dell Regional High School

Particles in a Solid, Liquid and Gas

Random Motion of Gas Particles

II. Gas Pressure A. Pressure is force per unit area 1. result of particle collisions 2. measured by a barometer 3. influenced by temperature, gas volume, and the number of gas particles a. as the number of particle collisions increases the pressure increases

Kinetic Theory A. Assumptions 1. gas particles do not attract each other 2. gas particles are very small 3. particles are very far apart 4. constant, random motion 5. elastic collisions 6. kinetic energy varies with temperature

B. Properties of Gases 1. low density (grams/liter) 2. can expand and can be compressed 3. can diffuse and effuse a. rate related to molar mass b. diffusion is the movement of particles from an area of greater concentration to an area of lesser concentration c. effusion is the movement of gas particles through a small opening

B. Units of Pressure 1. pascal - 1Pa = 1N(newton)/m2 (meter squared) 2. psi (pounds/square inch) 3. mm Hg or torr 4. atm (atmospheres) * 1 atm = 760 mm Hg = 760 torr = 101.3 KPa = 14.7 psi (pounds per square inch)

Measuring Atmospheric Pressure

Aneroid Baramoter Mercury Barometer

II. The Gas Laws A.Boyle’s Law (P1V1 = P2V2 )inverse relationship 1.As the volume of a gas increases the pressure decreases (temperature remains constant) 2. Example A sample of gas in a balloon is compressed from 7.00 L to 3.50 L. The pressure at 7.00L is 125 KPa. What will the pressure be at 2.50L if the temperature remains constant? P1 = 125 KPa P2 = X V1 = 7.00L V2 = 3.50L (125)(7.00) = (X) (3.50) X = 250.KPa

Boyle’s Law

As volume increases the pressure decreases when temperature remains constant

Boyles Law

B. Charles’ Law V1 = V2 must use kelvin T1 T2 temperature As the temperature of a gas increases the volume increases (direct relationship) 2. Example A gas sample at 20.0 C occupies a volume of 3.00 L. If the temperature is raised to 50.0 C, what will the volume be if the pressure remains constant? V1 = 3.00L V2 = X T1 = 293K T2 = 323K 3.00 = X 293X = (3)(323) X = (3)(323) 293 323 293 X = 3.31 L

Charles’ Law – Temperature increases – volume increases

Charles’ Law

1. as the temperature increases the pressure C. Gay Lussac’s Law P1 = P2 T1 T2 1. as the temperature increases the pressure increases when the volume remains constant 2. Example The pressure of a gas in a tank is 4.00 atm at 200.0C. If the temperature rises rises to 280.0C, what will be the pressure of the gas in the tank? P1 = 4.00 atm P2 = X T1 = 473K T2 = 553K 4.00 = X 473X = (4)(553) X = (4)(553) 553 473 X = 4.68 atm

D. Combined Gas Law P1 V1 = P2 V2 T1 T2 1. Combines Boyle’s, Charle’s and Gay Lussac’s 2. Example A gas at 70.0KPa and 10.0C fills a flexible container with an initial volume of 4.00L If the temperature is raised to 60C and the pressure is raised to 80.0 KPa, what is the new volume? P1 = 70.0 KPa P2 = 80.0 KPa V1 = 4.00L V2 = X T1 = 283K T2 = 333K (70.0)(4.00) = (80.0)(X) 283 333 X = (333)(70.0)(4.00) (283)(80.0) X = 4.12L

E. Dalton’s Law of Partial Pressures Ptotal = P1 + P2 + P3 + .....Pn The total pressure of a mixture of gases is equal to the sum of the pressures of all the gases in the mixture 1. Example Find the total pressure for a mixture that contains four gases with partial pressures of 5.00 kPa, 4.56 kPa, 3.02 kPa and 1.20kPa.

Dalton’s Law Partial Pressures

Dalton’s Law of Partial Pressures

2. Suppose two gases in a container have a total pressure of 1.20 atm. What is the pressure of gas B if the partial pressure of gas A is 0.75 atm? 3. What is the partial pressure of hydrogen gas in a mixture of hydrogen and helium if the total pressure is 600.0mmHg and the partial pressure of helium is 439 mmHg?

III. Avogadro’s Principle A. Equal volumes of gases at the same temperature and pressure have the same number of particles B. Molar Volume (22.4 L at STP) 1. volume of one mole of gas particles at STP(standard temperature and pressure) 0C and 1.00 atm (760mm Hg) * 1 mole of any gas at STP = 22.4 L 2. conversion factors 1 mol 22.4 L 22.4 L 1 mol

Avogadro’s Principle

Equal volumes of gases at the same temperature and pressure contain the same number of particles

C. Sample Problems 1. Calculate the volume occupied by .250 mol of oxygen gas at STP. 2. Calculate the number of moles of methane gas in a 11.2 L flask at STP.

3. Calculate the volume of 88.0 g of CO2 at STP. 4. How many grams of He are found in a 5.60L balloon at STP?

5. Calculate the density of H2 at STP. D = molar mass molar volume 6. Calculate the molar mass of a gas that has a density of 3.2 g/L.

IV. Ideal vs Real Gases A. Ideal compared to Real Gases 1. ideal gas a) particles do not have volume b) there are no intermolecular attractions c) all particle collisions are elastic d) obey all kinetic theory assumptions

2. real gases behave like ideal gases except when a) pressure is very high b) temperatures are low c) molecules are very large d) spaces between particles is small (small volume)

B. Ideal Gas Law - PV = nRT 1. pressure ( atm,mm Hg, KPa) 2. volume (liters) 3. temperature (kelvin) 4. number of moles (n) 5. R = constant (L) (pressure unit*) (mol) (K)

unit for pressure determines which constant must be used in the Ideal Gas Law PV = nRT a) R = 62.4 (pressure is mm Hg) b) R = .0821 (pressure is atm) c) R = 8.314 (pressure is KPa)

Ideal Gas Law PV = nRT

What Principles and/or Laws are Ilustrated?

C. Application Problems (PV = nRT) 1. How many moles of O2 are in a 2.00L container at 2.00 atm pressure and 200K? 2. Calculate the volume occupied by 2.00 mol of N2 at 300K and .800 atm pressure.

3. What is the pressure in mm Hg of .200 moles of gas in a 5.00 L container at 27C? 4. Calculate the number of grams of oxygen in a 4.00 L sample of gas at 1.00 atm and 27 C.