3D Rigid Body Equilibrium. (Reference 5.5 and 5.6)

Slides:



Advertisements
Similar presentations
Equilibrium of Rigid Bodies
Advertisements

Today’s Objective: Students will be able to:
Equilibrium of a Rigid Body
EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS
Licensed Electrical & Mechanical Engineer
EQUILIBRIUM OF A RIGID BODY & FREE-BODY DIAGRAMS
More Truss Analysis Problems
FRAMES AND MACHINES (Section 6.6)
EQUILIBRIUM OF A RIGID BODY & FREE-BODY DIAGRAMS
EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS
Chapter 6 Structural Analysis Section 6.6 FRAMES AND MACHINES
Rigid Bodies II: Equilibrium
Equilibrium of Rigid Bodies
Today’s Objectives: Students will be able to :
5.6 Equations of Equilibrium
Copyright © 2010 Pearson Education South Asia Pte Ltd
EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMBERS
5.4 Two- and Three-Force Members
Today’s Objectives: Students will be able to :
1 ENGINEERING MECHANICS STATICS & DYNAMICS Instructor: Eng. Eman Al.Swaity University of Palestine College of Engineering & Urban Planning Chapter 6: Structural.
RIGID BODY EQUILIBRIUM IN 3-D (Sections 5.5 – 5.7)
Today’s Objective: Students will be able to:
ENGINEERING MECHANICS STATICS & DYNAMICS Instructor: Eng. Eman Al.Swaity University of Palestine College of Engineering & Urban Planning Chapter 5: Equilibrium.
Students will be able to:
Slide #: 1 Chapter 4 Equilibrium of Rigid Bodies.
Statics, Fourteenth Edition R.C. Hibbeler Copyright ©2016 by Pearson Education, Inc. All rights reserved. In-Class Activities: Check Homework Reading Quiz.
ME 201 Engineering Mechanics: Statics
EQUILIBRIUM OF A RIGID BODY & FREE-BODY DIAGRAMS
EQUATIONS OF EQUILIBRIUM IN 2-D
EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS
FRAMES AND MACHINES Today’s Objectives: Students will be able to: a) Draw the free body diagram of a frame or machine and its members. b) Determine the.
EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS In-Class Activities: Check Homework, if any Reading Quiz Applications Equations of Equilibrium.
Procedure for drawing a free-body diagram - 2-D force systems Imagine the body to be isolated or cut “free” from its constraints and connections, draw.
Equilibrium of a Rigid Body 5 Engineering Mechanics: Statics in SI Units, 12e Copyright © 2010 Pearson Education South Asia Pte Ltd.
MEC 0011 Statics Lecture 6 Prof. Sanghee Kim Fall_ 2012.
EQUILIBRIUM OF RIGID BODIES
EQUILIBRIUM OF A RIGID BODY & FREE-BODY DIAGRAMS Objectives: a) Identify support reactions, and, b) Draw a free-body diagram.
RIGID BODY EQUILIBRIUM IN 3-D
Equilibrium of Rigid Bodies
Equilibrium of Rigid Bodies
EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS
Equilibrium of Rigid Bodies
Today’s Objective: Students will be able to:
Today’s Objective: Students will be able to:
FRAMES AND MACHINES Today’s Objectives: Students will be able to:
EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS
EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS
ENGR-1100 Introduction to Engineering Analysis
DNT 122 – APPLIED MECHANICS
EQUATIONS OF EQUILIBRIUM & TWO- AND THREE-FORCE MEMEBERS
Equilibrium of Rigid Bodies
Equilibrium of Rigid Bodies
Today’s Objective: Students will be able to:
Today’s Objective: Students will be able to:
Today’s Objective: Students will be able to:
Equilibrium of Rigid Bodies
QUIZ (Chapter 4) 7. In statics, a couple is defined as __________ separated by a perpendicular distance. A) two forces in the same direction B) two.
ENGR-1100 Introduction to Engineering Analysis
FRAMES AND MACHINES Today’s Objectives: Students will be able to:
ENGINEERING MECHANICS
Equilibrium Of a Rigid Body.
Equilibrium Of a Rigid Body.
Equilibrium of Rigid Bodies
Equilibrium Of a Rigid Body.
EQUILIBRIUM OF A RIGID BODY & FREE-BODY DIAGRAMS
FRAMES AND MACHINES Today’s Objectives: Students will be able to:
Equilibrium of Rigid Bodies
Equilibrium of Rigid Bodies
Equilibrium Of a Rigid Body.
Low 39% High 112% Average 82% Mode 67%
Presentation transcript:

3D Rigid Body Equilibrium. (Reference 5.5 and 5.6) Lecture #7 Part b 3D Rigid Body Equilibrium. (Reference 5.5 and 5.6)

APPLICATIONS Ball-and-socket joints and journal bearings are often used in mechanical systems. To design the joints or bearings, the support reactions at these joints and the loads must be determined. Statics:The Next Generation (2nd Ed.) Mehta, Danielson, & Berg Lecture Notes for Sections 5.5-5.7

APPLICATIONS (continued) The tie rod from point A is used to support the overhang at the entrance of a building. It is pin connected to the wall at A and to the center of the overhang B. If A is moved to a lower position D, will the force in the rod change or remain the same? By making such a change without understanding if there is a change in forces, failure might occur. Statics:The Next Generation (2nd Ed.) Mehta, Danielson, & Berg Lecture Notes for Sections 5.5-5.7

APPLICATIONS (continued) The crane, which weighs 350 lb, is supporting a oil drum. How do you determine the largest oil drum weight that the crane can support without overturning ? Statics:The Next Generation (2nd Ed.) Mehta, Danielson, & Berg Lecture Notes for Sections 5.5-5.7

SUPPORT REACTIONS IN 3-D (Table 5-2) A few examples are shown above. Other support reactions are given in your text book (Table 5-2). As a general rule, if a support prevents translation of a body in a given direction, then a reaction force acting in the opposite direction is developed on the body. Similarly, if rotation is prevented, a couple moment is exerted on the body by the support. Statics:The Next Generation (2nd Ed.) Mehta, Danielson, & Berg Lecture Notes for Sections 5.5-5.7

More SUPPORT REACTIONS IN 3-D (Table 5-2)

Even More SUPPORT REACTIONS IN 3-D (Table 5-2)

FBD’s: IMPORTANT NOTE A single bearing or hinge can prevent rotation by providing a resistive couple moment. However, it is usually preferred to use two or more properly aligned bearings or hinges. Thus, in these cases, only force reactions are generated and there are no moment reactions created. Statics:The Next Generation (2nd Ed.) Mehta, Danielson, & Berg Lecture Notes for Sections 5.5-5.7

EQUATIONS OF EQUILIBRIUM (Section 5.6) As stated earlier, when a body is in equilibrium, the net force and the net moment equal zero, i.e.,  F = 0 and  MO = 0 . These two vector equations can be written as six scalar equations of equilibrium (EofE). These are FX =  FY =  FZ = 0 MX =  MY =  MZ = 0 The moment equations can be determined about any point. Usually, choosing the point where the maximum number of unknown forces are present simplifies the solution. Any forces occurring at the point where moments are taken do not appear in the moment equation since they pass through the point. Statics:The Next Generation (2nd Ed.) Mehta, Danielson, & Berg Lecture Notes for Sections 5.5-5.7

CONSTRAINTS AND STATICAL DETERMINACY (Section 5.7) Redundant Constraints: When a body has more supports than necessary to hold it in equilibrium, it becomes statically indeterminate. A problem that is statically indeterminate has more unknowns than equations of equilibrium. Are statically indeterminate structures used in practice? Why or why not? Statics:The Next Generation (2nd Ed.) Mehta, Danielson, & Berg Lecture Notes for Sections 5.5-5.7

IMPROPER CONSTRAINTS Here, we have 6 unknowns but there is nothing restricting rotation about the AB axis. In some cases, there may be as many unknown reactions as there are equations of equilibrium. However, if the supports are not properly constrained, the body may become unstable for some loading cases. Statics:The Next Generation (2nd Ed.) Mehta, Danielson, & Berg Lecture Notes for Sections 5.5-5.7

Find: Reactions at the thrust bearing A and cable BC. EXAMPLE Given: The rod, supported by thrust bearing at A and cable BC, is subjected to an 80 lb force. Find: Reactions at the thrust bearing A and cable BC. Plan: a) Establish the x, y and z axes. b) Draw a FBD of the rod. c) Write the forces using scalar equations. d) Apply scalar equations of equilibrium to solve for the unknown forces. Statics:The Next Generation (2nd Ed.) Mehta, Danielson, & Berg Lecture Notes for Sections 5.5-5.7

EXAMPLE (continued) FBD of the rod: Applying scalar equations of equilibrium in appropriate order, we get F X = AX = 0 ; AX = 0 F Z = AZ + FBC – 80 = 0 ; M Y = – 80 ( 1.5 ) + FBC ( 3.0 ) = 0 ; Solving these last two equations: FBC = 40 lb, AZ = 40 lb Statics:The Next Generation (2nd Ed.) Mehta, Danielson, & Berg Lecture Notes for Sections 5.5-5.7

EXAMPLE (continued) FBD of the rod: = 40 lb Now write scalar moment equations about what point? Point A! M X = ( MA) X + 40 (6) – 80 (6) = 0 ; (MA ) X= 240 lb ft M Z = ( MA) Z = 0 ; (MA ) Z= 0 Statics:The Next Generation (2nd Ed.) Mehta, Danielson, & Berg Lecture Notes for Sections 5.5-5.7

A) 5 force and 1 moment reaction B) 5 force reactions CONCEPT QUIZ 1. The rod AB is supported using two cables at B and a ball-and-socket joint at A. How many unknown support reactions exist in this problem? A) 5 force and 1 moment reaction B) 5 force reactions C) 3 force and 3 moment reactions D) 4 force and 2 moment reactions ANSWERS : 1. B Statics:The Next Generation (2nd Ed.) Mehta, Danielson, & Berg Lecture Notes for Sections 5.5-5.7

CONCEPT QUIZ (continued) 2. If an additional couple moment in the vertical direction is applied to rod AB at point C, then what will happen to the rod? A) The rod remains in equilibrium as the cables provide the necessary support reactions. B) The rod remains in equilibrium as the ball-and-socket joint will provide the necessary resistive reactions. C) The rod becomes unstable as the cables cannot support compressive forces. D) The rod becomes unstable since a moment about AB cannot be restricted. ANSWERS: 2. D Statics:The Next Generation (2nd Ed.) Mehta, Danielson, & Berg Lecture Notes for Sections 5.5-5.7

Find: The reactions at all the supports for the loading shown. GROUP PROBLEM SOLVING Given: A rod is supported by smooth journal bearings at A, B, and C. Assume the rod is properly aligned. Find: The reactions at all the supports for the loading shown. Plan: a) Draw a FBD of the rod. b) Apply scalar equations of equilibrium to solve for the unknowns. Statics:The Next Generation (2nd Ed.) Mehta, Danielson, & Berg Lecture Notes for Sections 5.5-5.7

GROUP PROBLEM SOLVING (continued) A FBD of the rod: Applying scalar equations of equilibrium in appropriate order, we get F Y = 450 cos 45 + CY = 0 ; CY = – 318 N M Y = CZ (0.6) – 300 = 0 ; CZ = 500 N M Z = – BX ( 0.8 ) – ( – 318 ) ( 0.6 ) = 0 ; BX = 239 N Statics:The Next Generation (2nd Ed.) Mehta, Danielson, & Berg Lecture Notes for Sections 5.5-5.7

GROUP PROBLEM SOLVING (continued) A FBD of the rod: ∑ M X = BZ ( 0.8 ) – 450 cos 45 (0.4) – 450 sin 45 ( 0.8 + 0.4 ) + 318 ( 0.4 ) + 500 ( 0.8 + 0.4 ) = 0 ; BZ = – 273 N F X = AX + 239 = 0 ; AX = – 239 N F Z = AZ – ( – 273 ) + 500 – 450 sin 45 = 0 ; AZ = 90.9 N Statics:The Next Generation (2nd Ed.) Mehta, Danielson, & Berg Lecture Notes for Sections 5.5-5.7

ATTENTION QUIZ 1. A plate is supported by a ball-and-socket joint at A, a roller joint at B, and a cable at C. How many unknown support reactions are there in this problem? A) 4 forces and 2 moments B) 6 forces C) 5 forces D) 4 forces and 1 moment ANSWER: 1. C Statics:The Next Generation (2nd Ed.) Mehta, Danielson, & Berg Lecture Notes for Sections 5.5-5.7

2. What will be the easiest way to determine the force reaction BZ ? ATTENTION QUIZ 2. What will be the easiest way to determine the force reaction BZ ? A) Scalar equation  FZ = 0 B) Vector equation  MA = 0 C) Scalar equation  MZ = 0 D) Scalar equation  MY = 0 ANSWERS: 2. D Statics:The Next Generation (2nd Ed.) Mehta, Danielson, & Berg Lecture Notes for Sections 5.5-5.7

Find: Reactions at C and draw FBD: Recall: Mz My Cy Mx Cx Cz Discuss optional “equivalent cantilever”

Example Problem 1 – 3D Sign SOLUTION: Create a free-body diagram for the sign. Apply the conditions for static equilibrium to develop equations for the unknown reactions. A sign of uniform density weighs 270 lb and is supported by a ball-and-socket joint at A and by two cables. Determine the tension in each cable and the reaction at A.

25

26

Bob, finish 3D moment example problem! 27

28

29

30