Transport Layer1 Flow and Congestion Control Ram Dantu (compiled from various text books)

Slides:



Advertisements
Similar presentations
Congestion Control and Fairness Models Nick Feamster CS 4251 Computer Networking II Spring 2008.
Advertisements

Principles of Congestion Control Chapter 3.6 Computer Networking: A top-down approach.
3-1 TCP Protocol r point-to-point: m one sender, one receiver r reliable, in-order byte steam: m no “message boundaries” r pipelined: m TCP congestion.
1 TCP Congestion Control. 2 TCP Segment Structure source port # dest port # 32 bits application data (variable length) sequence number acknowledgement.
Introduction 1 Lecture 14 Transport Layer (Transmission Control Protocol) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer.
School of Information Technologies TCP Congestion Control NETS3303/3603 Week 9.
Announcement Homework 2 in tonight –Will be graded and sent back before Th. class Midterm next Tu. in class –Review session next time –Closed book –One.
Chapter 3 Transport Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 12.
Announcement Project 2 finally ready on Tlab Homework 2 due next Mon tonight –Will be graded and sent back before Tu. class Midterm next Th. in class –Review.
Transport Layer 3-1 outline r TCP m segment structure m reliable data transfer m flow control m congestion control.
Transport Layer 3-1 Fast Retransmit r time-out period often relatively long: m long delay before resending lost packet r detect lost segments via duplicate.
Transport Layer3-1 Congestion Control. Transport Layer3-2 Principles of Congestion Control Congestion: r informally: “too many sources sending too much.
Transport Layer 3-1 Outline r TCP m Congestion control m Flow control.
10/7/ /9/2003 TCP and Congestion Control October 7-9, 2003.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley,
Week 9 TCP9-1 Week 9 TCP 3 outline r 3.5 Connection-oriented transport: TCP m segment structure m reliable data transfer m flow control m connection management.
The Future r Homework questions> r The next test is coming the 19 th (just before turkey day!) r Wednesday = review + anything not done today r Friday.
1 Chapter 3 Transport Layer. 2 Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4.
Data Communication and Networks
Transport Layer3-1 Data Communication and Networks Lecture 8 Congestion Control October 28, 2004.
Transport Layer Congestion control. Transport Layer 3-2 Approaches towards congestion control End-to-end congestion control: r no explicit feedback.
EEC-484/584 Computer Networks Lecture 14 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
Transport Layer3-1 Announcement r Homework 2 in tonight m Will be graded and sent back before Th. class r Midterm next Tu. in class m Review session next.
EEC-484/584 Computer Networks Lecture 16 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
3: Transport Layer3b-1 Principles of Congestion Control Congestion: r informally: “too many sources sending too much data too fast for network to handle”
Transport Layer 4 2: Transport Layer 4.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Chapter3_3.
Transport Layer3-1 Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles.
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A.
Principles of Congestion Control Congestion: informally: “too many sources sending too much data too fast for network to handle” different from flow control!
17-1 Last time □ UDP socket programming ♦ DatagramSocket, DatagramPacket □ TCP ♦ Sequence numbers, ACKs ♦ RTT, DevRTT, timeout calculations ♦ Reliable.
Chapter 3 Transport Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March
1 Transport Layer Lecture 10 Imran Ahmed University of Management & Technology.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
Transport Layer 3- Midterm score distribution. Transport Layer 3- TCP congestion control: additive increase, multiplicative decrease Approach: increase.
By N.Gopinath AP/CSE Unit: III Introduction to Transport layer.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
1 John Magee 20 February 2014 CS 280: Transport Layer: Congestion Control Concepts, TCP Congestion Control Most slides adapted from Kurose and Ross, Computer.
CS-1652 The slides are adapted from the publisher’s material All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Jack Lange.
Advance Computer Networks Lecture#09 & 10 Instructor: Engr. Muhammad Mateen Yaqoob.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
-1- Georgia State UniversitySensorweb Research Laboratory CSC4220/6220 Computer Networks Dr. WenZhan Song Professor, Computer Science.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
Transport Layer session 1 TELE3118: Network Technologies Week 11: Transport Layer TCP Some slides have been taken from: r Computer Networking:
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
CS450 – Introduction to Networking Lecture 19 – Congestion Control (2)
Approaches towards congestion control
Transport Layer CS 381 3/7/2017.
Chapter 3 outline 3.1 transport-layer services
Chapter 6 TCP Congestion Control
CS-1652 Jack Lange University of Pittsburgh
Chapter 3 outline 3.1 Transport-layer services
Flow and Congestion Control
Chapter 6 TCP Congestion Control
October 1st, 2013 CS-1652 Jack Lange University of Pittsburgh
CS 5565 Network Architecture and Protocols
TCP Overview.
CS-1652 Congestion Control Jack Lange University of Pittsburgh
Transport Layer: Congestion Control
Chapter 3 outline 3.1 Transport-layer services
TCP flow and congestion control
Chapter 3 Transport Layer
October 4th, 2011 CS-1652 Jack Lange University of Pittsburgh
Presentation transcript:

Transport Layer1 Flow and Congestion Control Ram Dantu (compiled from various text books)

Transport Layer2 TCP Flow Control r receive side of TCP connection has a receive buffer: r speed-matching service: matching the send rate to the receiving app’s drain rate r app process may be slow at reading from buffer sender won’t overflow receiver’s buffer by transmitting too much, too fast flow control

Transport Layer3 TCP Flow control: how it works (Suppose TCP receiver discards out-of-order segments)  spare room in buffer = RcvWindow = RcvBuffer-[LastByteRcvd - LastByteRead]  Rcvr advertises spare room by including value of RcvWindow in segments  Sender limits unACKed data to RcvWindow m guarantees receive buffer doesn’t overflow

Transport Layer4 Principles of Congestion Control Congestion: r informally: “too many sources sending too much data too fast for network to handle” r different from flow control! r manifestations: m lost packets (buffer overflow at routers) m long delays (queueing in router buffers) r a top-10 problem!

Transport Layer5 Congestion: A Close-up View r knee – point after which m throughput increases very slowly m delay increases fast r cliff – point after which m throughput starts to decrease very fast to zero (congestion collapse) m delay approaches infinity r Note (in an M/M/1 queue) m delay = 1/(1 – utilization) Load Throughput Delay kneecliff congestion collapse packet loss

Transport Layer6 Congestion Control vs. Congestion Avoidance r Congestion control goal m stay left of cliff r Congestion avoidance goal m stay left of knee r Right of cliff: m Congestion collapse Load Throughput kneecliff congestion collapse

Transport Layer7 Congestion Collapse: How Bad is It? r Definition: Increase in network load results in decrease of useful work done r Many possible causes m Spurious retransmissions of packets still in flight m Undelivered packets Packets consume resources and are dropped elsewhere in network m Fragments Mismatch of transmission and retransmission units m Control traffic Large percentage of traffic is for control m Stale or unwanted packets Packets that are delayed on long queues

Transport Layer8 i  ii r If information about i, and  is known in a central location where control of i or  can be effected with zero time delays, the congestion problem is solved! r Capacity (  ) cannot be provisioned very fast => demand must be managed r Perfect callback: Admit packets into the network from the user only when the network has capacity (bandwidth and buffers) to get the packet across. Solution Directions…. 1 n Capacity Demand Problem: demand outstrips available capacity

Transport Layer9 Causes/costs of congestion: scenario 3 r four senders r multihop paths r timeout/retransmit in Q: what happens as and increase ? in finite shared output link buffers Host A in : original data Host B out ' in : original data, plus retransmitted data

Transport Layer10 Causes/costs of congestion: scenario 3 Another “cost” of congestion: r when packet dropped, any “upstream transmission capacity used for that packet was wasted! HostAHostA HostBHostB o u t

Transport Layer11 Approaches towards congestion control End-end congestion control: r no explicit feedback from network r congestion inferred from end-system observed loss, delay r approach taken by TCP Network-assisted congestion control: r routers provide feedback to end systems m single bit indicating congestion (SNA, DECbit, TCP/IP ECN, ATM) m explicit rate sender should send at Two broad approaches towards congestion control:

Transport Layer12 TCP Congestion Control r end-end control (no network assistance) r sender limits transmission: LastByteSent-LastByteAcked  CongWin r Roughly,  CongWin is dynamic, function of perceived network congestion How does sender perceive congestion? r loss event = timeout or 3 duplicate acks  TCP sender reduces rate ( CongWin ) after loss event three mechanisms: m AIMD m slow start m conservative after timeout events rate = CongWin RTT Bytes/sec

Transport Layer13 TCP AIMD (Additive increase and multiplicative decrease) multiplicative decrease: cut CongWin in half after loss event additive increase: increase CongWin by 1 MSS every RTT in the absence of loss events: probing Long-lived TCP connection

Transport Layer14 TCP Slow Start  When connection begins, CongWin = 1 MSS m Example: MSS = 500 bytes & RTT = 200 msec m initial rate = 20 kbps r available bandwidth may be >> MSS/RTT m desirable to quickly ramp up to respectable rate r When connection begins, increase rate exponentially fast until first loss event

Transport Layer15 TCP Slow Start (more) r When connection begins, increase rate exponentially until first loss event:  double CongWin every RTT  done by incrementing CongWin for every ACK received r Summary: initial rate is slow but ramps up exponentially fast Host A one segment RTT Host B time two segments four segments

Transport Layer16 Refinement r After 3 dup ACKs:  CongWin is cut in half m window then grows linearly r But after timeout event:  CongWin instead set to 1 MSS; m window then grows exponentially m to a threshold, then grows linearly 3 dup ACKs indicates network capable of delivering some segments timeout before 3 dup ACKs is “more alarming” Philosophy:

Transport Layer17 Refinement (more) Q: When should the exponential increase switch to linear? A: When CongWin gets to 1/2 of its value before timeout. Implementation: r Variable Threshold r At loss event, Threshold is set to 1/2 of CongWin just before loss event

Transport Layer18 Summary: TCP Congestion Control  When CongWin is below Threshold, sender in slow-start phase, window grows exponentially.  When CongWin is above Threshold, sender is in congestion-avoidance phase, window grows linearly.  When a triple duplicate ACK occurs, Threshold set to CongWin/2 and CongWin set to Threshold.  When timeout occurs, Threshold set to CongWin/2 and CongWin is set to 1 MSS.

Transport Layer19 Fairness goal: if K TCP sessions share same bottleneck link of bandwidth R, each should have average rate of R/K TCP connection 1 bottleneck router capacity R TCP connection 2 TCP Fairness

Transport Layer20 Why is TCP fair? Two competing sessions: r Additive increase gives slope of 1, as throughout increases r multiplicative decrease decreases throughput proportionally R R equal bandwidth share Connection 1 throughput Connection 2 throughput congestion avoidance: additive increase loss: decrease window by factor of 2 congestion avoidance: additive increase loss: decrease window by factor of 2

Transport Layer21 Fairness (more) Fairness and UDP r Multimedia apps often do not use TCP m do not want rate throttled by congestion control r Instead use UDP: m pump audio/video at constant rate, tolerate packet loss r Research area: TCP friendly Fairness and parallel TCP connections r nothing prevents app from opening parallel connections between 2 hosts. r Web browsers do this r Example: link of rate R supporting 9 cnctions; m new app asks for 1 TCP, gets rate R/10 m new app asks for 11 TCPs, gets R/2 !