Open Loop Gain. We test the Open Loop Gain of a CMOS amplifier of Example 3-1. The gain is 30. Experiment 11-11.

Slides:



Advertisements
Similar presentations
Lecture 4 Operational Amplifiers—Non-ideal behavior
Advertisements

Operational Amplifiers
1. Using the gain bandwidth product, find the bandwidth of the circuit below. Use the AOL curve and closed loop gain to graphically determine the bandwidth.
The Inverting Mode Op-Amp. What is the Inverting Mode ? The op-amp can be connected up in various ways or modes. What it does depends on how it is connected.
1 Practical OP-AMP Circuits. 2 i i Integrator 3 Differentiator i i.
Second-order Butterworth Low-pass Filter Minh N Nguyen.
The uA741 Operational Amplifier
Operational Amplifier
Op-Amp Based Band Pass Filter. Equivalent DC (DC feedback)
Op-Amp- An active circuit element designed to perform mathematical operations of addition, subtraction, multiplication, division, differentiation and.
1 Analog Circuit Design Lesson 12 Mixer. 2 A mixer is a circuit which multiplies two signals and. That is, if the inputs are and, output will be.
HSPICE Simulation Program with Integrated Circuit Emphasis.
Circuit Simulation and Analysis with HSPICE
1 Exercise Repeat the simulation programs of Lesson Perform the same simulation programs of Lesson 1, except the circuit is a PMOS common.
Operational Amplifier
IDEAL OPERATIONAL AMPLIFIER AND OP-AMP CIRCUITS
EE136 STABILITY AND CONTROL LOOP COMPENSATION IN SWITCH MODE POWER SUPPLY Present By Huyen Tran.
A Wideband CMOS Current-Mode Operational Amplifier and Its Use for Band-Pass Filter Realization Mustafa Altun *, Hakan Kuntman * * Istanbul Technical University,
Islamic Azad University - Qazvin Branch1 HSPICE ® Introduction Autumn 2006.
FULLY DIFFERENTIAL OPAMP Eduardo Picatoste Calorimeter Electronics Upgrade Meeting.
ECE 4991 Electrical and Electronic Circuits Chapter 8.
St Columba’s High School Electricity and Electronics Op-amps.
LDO Regulator John O’Hollaren. StandardQuasi-LDOLDO High Dropout Stability not a problem Medium Dropout Stability a concern Low Dropout Stability is a.
LDO Regulator John O’Hollaren. StandardQuasi-LDOLDO High Dropout Stability not a problem Medium Dropout Stability a concern Low Dropout Stability is a.
Microelectronic Circuits, Sixth Edition Sedra/Smith Copyright © 2010 by Oxford University Press, Inc. Figure B.50 Input–output voltage transfer characteristic.
OPERATIONAL AMPLIFIERS. BASIC OP-AMP Symbol and Terminals A standard operational amplifier (op-amp) has; V out is the output voltage, V+ is the non-inverting.
Chapter 8 The Operational Amplifier (Part I) ~ Using PSpice
1 The Operational Amplifier continued The voltage follower provides unity gain, however, the output impedance is changed according to the o/p impedance.
Operational Amplifier. What is an Operational Amplifier? 1)Differential amplifier - amplifies difference between two signals. 2)Can amplify very small.
1 Op-Amp Imperfections in The Linear Range of Operations Gain and Bandwidth Limitations  Ideal op amps have infinite open-loop gain magnitude (A oL is.
Basic Electronics Ninth Edition Basic Electronics Ninth Edition ©2002 The McGraw-Hill Companies Grob Schultz.
Operational Amplifiers Op Amps – a useful building block K. El-Ayat 11.
The uA741 Operational Amplifier
CMOS AMPLIFIERS Simple Inverting Amplifier Differential Amplifiers Cascode Amplifier Output Amplifiers Summary.
ECE201 Lect-131 Loop Analysis (7.8) Circuits with Op-Amps (3.3) Dr. Holbert October 9, 2001.
Practice Problems 1 P1.17: An FM radio receiver has an input resistance of 75 Ohm. The input signal provided by a distant transmitter is 5 µV rms, and.
OPERATIONAL AMPLIFIERS + - Presented by D.Satishkumar Asst. Professor, Electrical & Electronics Engineering
CMOS AMPLIFIERS Simple Inverting Amplifier Differential Amplifiers Cascode Amplifier Output Amplifiers Summary.
2. CMOS Op-amp설계 (1).
Operational Amplifier
TECHNIQUES OF DC CIRCUIT ANALYSIS: SKEE 1023
The Ideal Op-amp (Operational amplifier) v+ VOUT v– +15V VIN VOUT –15V
Chapter 5 Operational Amplifier
Open book, open notes, bring a calculator
ECE 1270: Introduction to Electric Circuits
ECE 3302 Fundamentals of Electrical Engineering
Analogue Electronic 2 EMT 212
Feedback No feedback : Open loop (used in comparators)
The open loop gain of this op-amp is 105 and the bandwidth is 10 Hz
Introduction Equivalent circuit model of op-amp
Examples of Negative Feedback Applications: A) Inverting Amplifiers
What is an Op-Amp Low cost integrating circuit consisting of:
Operational Amplifiers (Op Amps) in Chemical Instrumentation
OP-AMPS: basics & Inverting-amplifier
Feedback Amplifiers.
Electronic Circuit-II
Operational Amplifiers
TECHNIQUES OF DC CIRCUIT ANALYSIS: SKEE 1023
CMOS Analog Design Using All-Region MOSFET Modeling
A general method for TF It’s systematic Uses Mason’s formula
IDEAL OPERATIONAL AMPLIFIER AND OP-AMP CIRCUITS
Operational Amplifier (Op-Amp)-μA741
Types of Amplifiers Common source, input pairs, are transconductance
Chapter 4 – Operational Amplifiers – Part 2
Medical electronics II
Ch. 5 – Operational Amplifiers
Electronic Circuit-II
Ch. 5 – Operational Amplifiers
10k 20k Vin Vout H3 What is the gain?
Microelectronic Circuits, Sixth Edition
Presentation transcript:

Open Loop Gain

We test the Open Loop Gain of a CMOS amplifier of Example 3-1. The gain is 30. Experiment 11-11

.protect.lib 'c:\mm0355v.l' TT.unprotect.op.options nomod post VDD103.3v.paramW1=10u W2=10u W3=10u W4=10u M nch L=0.35u W='W1' m=1AD='0.95u*W1' +PD='2*(0.95u+W1)' AS='0.95u*W1' PS='2*(0.95u+W1)' M pch L=0.35u +W='W2' m=1AD='0.95u*W2' PD='2*(0.95u+W2)' +AS='0.95u*W2' PS='2*(0.95u+W2)' M pch L=0.35u +W='W3' m=1AD='0.95u*W3' PD='2*(0.95u+W3)' +AS='0.95u*W3' PS='2*(0.95u+W3)' M nch L=0.35u +W='W4' m=1AD='0.95u*W4' PD='2*(0.95u+W4)' +AS='0.95u*W4' PS='2*(0.95u+W4)' VGS1360.7v VGS4500.7v Vin60sin(0v 0.01v 10Meg).tran0.1ns600ns.end Vin VGS1=0.7V VGS4=0.7V

Experiment We test the Open Loop Gain of a CMOS amplifier of Example 4-1.

Example 4.1 DIFFERENTIAL AMPLIFIER.PROTECT.LIB "C:\mm0355v.l" TT.UNPROTECT VDDVDD! 0 1.5V VSSVSS! V MQ12 Vi+ 3 VSS! NCHW=10U L=2U MQ2Vo+ Vi- 3 VSS! NCHW=10U L=2U MQ32 2 VDD! VDD! PCHW=7U L=2U MQ4Vo+ 2 VDD! VDD! PCHW=7U L=2U MQ53 3 VSS! VSS! NCHW=100U L=2U.OP Vin1Vi+0AC1.ACDEC k Vin2Vi-00v.PLOTACVDB(Vo+).END

Experiment We test the Open Loop Gain of a CMOS amplifier of Example 5-6. The gain is 3000.

Classic Two-Stage OP AMP *********************************.PROTECT.OPTION POST.LIB 'c:\mm0355v.l' TT.UNPROTECT VDDVDD! 0DC 1.5V VSSVSS! 0DC -1.5V.GLOBAL VDD! VSS! ******************************************************* M11 V- 3VSS! NCHW=10UL=2U M22 V+ 3VSS! NCHW=10UL=2U M3VDD! 1 1VDD! PCHW=3UL=2U M4VDD! 1 2VDD! PCHW=3UL=2U M53 VB VSS!VSS! NCHW=30UL=2U M66 2 VOVDD! PCHW=4UL=3U M7VO VB2 VSS!VSS! NCHW=14UL=2U VBIAS5VB VBIAS7VB ******************************************************* Rm6VDD!60 *VDS6VDD!VO0V.OP *** Transient Simulation *** Vin1V-0AC1.ACDEC k Vin2V+00v.PLOTACVDB(Vo).END

Experiment We test the Open Loop Gain of a CMOS amplifier of Example The gain was found to be 3000.

Ex 6-20.protect.lib 'c:\mm0355v.l' TT.unprotect.op.options nomod post VDD105V Rm2voutvout_10 Rm111_10.paramW1=10u W2=20u W3=30u W4=30u M4321_11 +pch L=1u W='W4' m=1 +AD='0.95u*W4' PD='2*(0.95u+W4)' +AS='0.95u*W4' PS='2*(0.95u+W4)' M3vout431 +pch L=0.5u W='W3' m=1 +AD='0.95u*W3' PD='2*(0.95u+W3)' +AS='0.95u*W3' PS='2*(0.95u+W3)' M2vout_1670 +nch L=0.5u W='W2' m=1 +AD='0.95u*W2' PD='2*(0.95u+W2)' +AS='0.95u*W2' PS='2*(0.95u+W2)' M nch L=1u W='W1' m=1 +AD='0.95u*W1' PD='2*(0.95u+W1)' +AS='0.95u*W1' PS='2*(0.95u+W1)' Vin90AC1.ACDEC k VG V VG2601.8V VG3403V VG4204V *.tf v(vout) vin *.tran 0.1us 600us.plotVDB(vout_1).end

Experiment We test the Open Loop Gain of a CMOS amplifier of Example 6-1. The gain was found to be 22.

A typical and simple common gate amplifier is shown below:

Example 6-1.protect.lib 'c:\mm0355v.l' TT.unprotect.op.options nomod post VDD103.3V RL111100k.paramW1=5u M nch L=0.35u W='W1' m=1 +AD='0.95u*W1' PD='2*(0.95u+W1)' +AS='0.95u*W1' PS='2*(0.95u+W1)' VG200.65v Vin130AC1.ACDEC k.PLOTACVDB(11).END

Experiment We test the Open Loop Gain of a CMOS amplifier of Example 6-27.

The gain is about 817k.

Ex 6-20.protect.lib 'c:\mm0355v.l' TT.unprotect.op.options nomod post VDD105V Rm2voutvout_10 Rm111_10.paramW1=10u W2=20u W3=30u W4=30u M4321_11 +pch L=1u W='W4' m=1 +AD='0.95u*W4' PD='2*(0.95u+W4)' +AS='0.95u*W4' PS='2*(0.95u+W4)' M3vout431 +pch L=0.5u W='W3' m=1 +AD='0.95u*W3' PD='2*(0.95u+W3)' +AS='0.95u*W3' PS='2*(0.95u+W3)' M2vout_1670 +nch L=0.5u W='W2' m=1 +AD='0.95u*W2' PD='2*(0.95u+W2)' +AS='0.95u*W2' PS='2*(0.95u+W2)' M nch L=1u W='W1' m=1 +AD='0.95u*W1' PD='2*(0.95u+W1)' +AS='0.95u*W1' PS='2*(0.95u+W1)' Vin90AC1.ACDEC k VG V VG2601.8V VG3403V VG4204V *.tf v(vout) vin *.tran 0.1us 600us.plotVDB(vout_1).end

Experiment We test the Open Loop Gain of a CMOS amplifier of Example 8-1. The gain is found to be

A High Gain Differential Amplifier M1=(10u/2u)*3 M2=(10u/2u)*3 M3 =(100u/2u)*7 M4 =(10u/2u)* M5 =(10u/2u)* M6 =(10u/2u)* M7 =(10u/2u)* M8 =(10u/2u)*3 M9 =(10u/2u)*3 M10 =(10u/2u)*3 M11 =(10u/2u)*3

Test 1 *********************************.PROTECT.OPTION POST.LIB 'c:\mm0355v.l' TT.UNPROTECT.op VDDVDD! 01.5V VSSVSS! 0-1.5V.GLOBAL VDD! VSS! ******************************************************* M15 Vi+ 66 PCHW=10UL=2U m=3 M24 Vi- 66 PCHW=10UL=2U m=3 M36 VB3 VDD!VDD! PCHW=100UL=2U m=7 M45 VB45 VSS!VSS! NCHW=10UL=2U M54 VB45 VSS!VSS! NCHW=10UL=2U M63 VB67 5VSS! NCHW=10UL=2U M7Vo+ VB67 4VSS! NCHW=10UL=2U M PCHW=10UL=2U m=3 M9Vo PCHW=10UL=2U m=3 M101 1 VDD!VDD! PCHW=10UL=2U m=3 M112 1 VDD!VDD! PCHW=10UL=2U m=3 VBIAS3VB300.75v VBIAS45VB v VBIAS67VB6700v Vin1Vi-0AC1.ACDEC k Vin2Vi+00v.PLOTACVDB(Vo+).END

Experiment We test the Open Loop Gain of a Inverting Integrator of Example 8-8.

OP AMP *********************************.PROTECT.OPTION POST.LIB 'c:\mm0355v.l' TT.UNPROTECT.op vdd vdd! 0 1.5v vss vss! v.global vdd! vss! ******************************************************* m1 5 v+ 6 6 pch w=10u l=2u m=3 m2 4 v- 6 6 pch w=10u l=2u m=3 m3 6 vb3 vdd! vdd! pch w=100u l=2u m=7 m4 5 vb45 vss! vss! nch w=10u l=2u m5 4 vb45 vss! vss! nch w=10u l=2u m6 3 vb67 5 vss! nch w=10u l=2u m7 vo vb67 4 vss! nch w=10u l=2u m pch w=10u l=2u m=3 m9 vo pch w=10u l=2u m=3 m vdd! vdd! pch w=10u l=2u m=3 m vdd! vdd! pch w=10u l=2u m=3 vbias3 vb v vbias45 vb v vbias67 vb67 0 0v ******************************************************* *cload vo 0 10p c2vov-0.7n R1vinv-10k *** transient simulation *** Vin1vin0AC1.ACDEC k Vin2Vi+00v.PLOTACVDB(Vo).END

Negative Feedback on Bandwidth

Experiment R i =3.3kΩ, R f =220kΩ

We use the high gain amplifier whose gain is 817k. The ckt of this amplifier is as follows:

Open loop open loop test.PROTECT.OPTION POST.LIB "C:\mm0355v.l" TT.UNPROTECT.op VDDVDD! 0 3.3V VSSVSS! V M11 1 VDD! VDD! PCHW=50U L=2U M22 1 VDD! VDD! PCHW=50U L=2U M VDD! PCHW=50U L=2U M VDD! PCHW=50U L=2U M53 VB5 5 VSS! NCHW=100U L=2U M64 VB6 6 VSS! NCHW=100U L=2U M75 Vi- 7 VSS!NCHW=100U L=2U M86 Vi+ 7 VSS!NCHW=100U L=2U M97 VB9 VSS! VSS!NCHW=100U L=2U M10Vo 4 VDD! VDD!PCHW=150U L=2U M11Vo VB11 VSS! VSS!NCHW=50U L=2U VBIAS5VB501.9V VBIAS6VB601.9V VBIAS9VB900.6V VBIAS1 VB V VBVi-01.65v Vin1110AC1.ACDEC k Vin2Vi v *Ri1203.3k *Rf12Vo220k.PLOTACVDB(Vo).END

f c(ol) =1.3kHz and open loop gain is 100dB.

f c(cl) =100kHz

Close loop close loop test.PROTECT.OPTION POST.LIB "C:\mm0355v.l" TT.UNPROTECT.op VDDVDD! 0 3.3V VSSVSS! V M11 1 VDD! VDD! PCHW=50U L=2U M22 1 VDD! VDD! PCHW=50U L=2U M VDD! PCHW=50U L=2U M VDD! PCHW=50U L=2U M53 VB5 5 VSS! NCHW=100U L=2U M64 VB6 6 VSS! NCHW=100U L=2U M75 Vi- 7 VSS!NCHW=100U L=2U M86 Vi+ 7 VSS!NCHW=100U L=2U M97 VB9 VSS! VSS!NCHW=100U L=2U M10Vo 4 VDD! VDD!PCHW=150U L=2U M11Vo VB11 VSS! VSS!NCHW=50U L=2U VBIAS5VB501.9V VBIAS6VB601.9V VBIAS9VB900.6V VBIAS1 VB V VBVi v Vin1110AC1.ACDEC k Vin2Vi v Ri1203.3k Rf12Vo220k.PLOTACVDB(Vo).END

Experiment R i =3.3kΩ, R f =220kΩ

We use the high gain amplifier whose gain is 42k. The ckt of this amplifier is as follows: M1=(10u/2u)*3 M2=(10u/2u)*3 M3 =(100u/2u)*7 M4 =(10u/2u)* M5 =(10u/2u)* M6 =(10u/2u)* M7 =(10u/2u)* M8 =(10u/2u)*3 M9 =(10u/2u)*3 M10 =(10u/2u)*3 M11 =(10u/2u)*3

f c(ol) =25kHz.

Open loop open loop *********************************.PROTECT.OPTION POST.LIB 'c:\mm0355v.l' TT.UNPROTECT.op VDDVDD! 01.5V VSSVSS! 0-1.5V.GLOBAL VDD! VSS! ******************************************************* M15 Vi+ 66 PCHW=10UL=2U m=3 M24 Vi- 66 PCHW=10UL=2U m=3 M36 VB3 VDD!VDD! PCHW=100UL=2U m=7 M45 VB45 VSS!VSS! NCHW=10UL=2U M54 VB45 VSS!VSS! NCHW=10UL=2U M63 VB67 5VSS! NCHW=10UL=2U M7VO VB67 4VSS! NCHW=10UL=2U M PCHW=10UL=2U m=3 M9VO 3 22 PCHW=10UL=2U m=3 M101 1 VDD!VDD! PCHW=10UL=2U m=3 M112 1 VDD!VDD! PCHW=10UL=2U m=3 VBIAS3VB300.75v VBIAS45VB v VBIAS67VB6700v Vin1Vi+0AC1.ACDEC k Vin2Vi-00v *RiVi-03.3k *RfVi-Vo220k.PLOT AC VDB(Vo).END

f c(cl) =30MHz.

Close loop close loop *********************************.PROTECT.OPTION POST.LIB 'c:\mm0355v.l' TT.UNPROTECT.op VDDVDD! 01.5V VSSVSS! 0-1.5V.GLOBAL VDD! VSS! ******************************************************* M15 Vi+ 66 PCHW=10UL=2U m=3 M24 Vi- 66 PCHW=10UL=2U m=3 M36 VB3 VDD!VDD! PCHW=100UL=2U m=7 M45 VB45 VSS!VSS! NCHW=10UL=2U M54 VB45 VSS!VSS! NCHW=10UL=2U M63 VB67 5VSS! NCHW=10UL=2U M7VO VB67 4VSS! NCHW=10UL=2U M PCHW=10UL=2U m=3 M9VO 3 22 PCHW=10UL=2U m=3 M101 1 VDD!VDD! PCHW=10UL=2U m=3 M112 1 VDD!VDD! PCHW=10UL=2U m=3 VBIAS3VB300.75v VBIAS45VB v VBIAS67VB6700v Vin1Vi+0AC1.ACDEC k RiVi-03.3k RfVi-Vo220k.PLOT AC VDB(Vo).END

Experiment R i =1k Ω, R f =47kΩ

We use the high gain amplifier whose gain is 42k. The ckt of this amplifier is as follows: M1=(10u/2u)*3 M2=(10u/2u)*3 M3 =(100u/2u)*7 M4 =(10u/2u)* M5 =(10u/2u)* M6 =(10u/2u)* M7 =(10u/2u)* M8 =(10u/2u)*3 M9 =(10u/2u)*3 M10 =(10u/2u)*3 M11 =(10u/2u)*3

f c(ol) =25kHz.

Open loop open loop *********************************.PROTECT.OPTION POST.LIB 'c:\mm0355v.l' TT.UNPROTECT.op VDDVDD! 01.5V VSSVSS! 0-1.5V.GLOBAL VDD! VSS! ******************************************************* M15 Vi+ 66 PCHW=10UL=2U m=3 M24 Vi- 66 PCHW=10UL=2U m=3 M36 VB3 VDD!VDD! PCHW=100UL=2U m=7 M45 VB45 VSS!VSS! NCHW=10UL=2U M54 VB45 VSS!VSS! NCHW=10UL=2U M63 VB67 5VSS! NCHW=10UL=2U M7VO VB67 4VSS! NCHW=10UL=2U M PCHW=10UL=2U m=3 M9VO 3 22 PCHW=10UL=2U m=3 M101 1 VDD!VDD! PCHW=10UL=2U m=3 M112 1 VDD!VDD! PCHW=10UL=2U m=3 VBIAS3VB300.75v VBIAS45VB v VBIAS67VB6700v Vin1Vi-0AC1.ACDEC k Vin2Vi+00v *RiVi-111k *RfVi-Vo47k.PLOT AC VDB(Vo).END

f c(cl) =25MHz.

Close loop close loop *********************************.PROTECT.OPTION POST.LIB 'c:\mm0355v.l' TT.UNPROTECT.op VDDVDD! 01.5V VSSVSS! 0-1.5V.GLOBAL VDD! VSS! ******************************************************* M15 Vi+ 66 PCHW=10UL=2U m=3 M24 Vi- 66 PCHW=10UL=2U m=3 M36 VB3 VDD!VDD! PCHW=100UL=2U m=7 M45 VB45 VSS!VSS! NCHW=10UL=2U M54 VB45 VSS!VSS! NCHW=10UL=2U M63 VB67 5VSS! NCHW=10UL=2U M7VO VB67 4VSS! NCHW=10UL=2U M PCHW=10UL=2U m=3 M9VO 3 22 PCHW=10UL=2U m=3 M101 1 VDD!VDD! PCHW=10UL=2U m=3 M112 1 VDD!VDD! PCHW=10UL=2U m=3 VBIAS3VB300.75v VBIAS45VB v VBIAS67VB6700v Vin1110AC1.ACDEC k Vin2Vi+00v RiVi-111k RfVi-Vo47k.PLOT AC VDB(Vo).END

Experiment R i =3.3kΩ, R f =220kΩ

The ckt of this amplifier is as follows:

f c(ol) =10MHz.

Open loop Example 4.1 DIFFERENTIAL AMPLIFIER.PROTECT.LIB "C:\mm0355v.l" TT.UNPROTECT VDDVDD! 0 1.5V VSSVSS! V MQ12 Vi+ 3 VSS! NCHW=10U L=2U MQ2Vo+ Vi- 3 VSS! NCHW=10U L=2U MQ32 2 VDD! VDD! PCHW=7U L=2U MQ4Vo+ 2 VDD! VDD! PCHW=7U L=2U MQ53 3 VSS! VSS! NCHW=100U L=2U.OP Vin1Vi+0AC1.ACDEC k Vin2Vi-00v *RiVi-03.3k *RfVi-Vo+220k.PLOTACVDB(Vo+).END

f c(cl) =55MHz.

Close loop Example 4.1 DIFFERENTIAL AMPLIFIER.PROTECT.LIB "C:\mm0355v.l" TT.UNPROTECT VDDVDD! 0 1.5V VSSVSS! V MQ12 Vi+ 3 VSS! NCHW=10U L=2U MQ2Vo+ Vi- 3 VSS! NCHW=10U L=2U MQ32 2 VDD! VDD! PCHW=7U L=2U MQ4Vo+ 2 VDD! VDD! PCHW=7U L=2U MQ53 3 VSS! VSS! NCHW=100U L=2U.OP Vin1Vi+0AC1.ACDEC k *Vin2Vi-100v RiVi-03.3k RfVi-Vo+220k.PLOTACVDB(Vo+).END

Experiment R i =1k Ω, R f =47kΩ

We use the high gain amplifier whose gain is 817k. The ckt of this amplifier is as follows:

f c(ol) =500Hz.

Open loop open loop.PROTECT.OPTION POST.LIB "C:\mm0355v.l" TT.UNPROTECT.op VDDVDD! 0 3.3V VSSVSS! V M11 1 VDD! VDD! PCHW=50U L=2U M22 1 VDD! VDD! PCHW=50U L=2U M VDD! PCHW=50U L=2U M VDD! PCHW=50U L=2U M53 VB5 5 VSS! NCHW=100U L=2U M64 VB6 6 VSS! NCHW=100U L=2U M75 Vi- 7 VSS!NCHW=100U L=2U M86 Vi+ 7 VSS!NCHW=100U L=2U M97 VB9 VSS! VSS!NCHW=100U L=2U M10Vo 4 VDD! VDD!PCHW=150U L=2U M11Vo VB11 VSS! VSS!NCHW=50U L=2U VBIAS5VB501.9V VBIAS6VB601.9V VBIAS9VB900.6V VBIAS1 VB V VBVi v Vin1110AC1.ACDEC k Vin2Vi+01.65v *Ri11121k *Rf11Vo47k.PLOTACVDB(Vo).END

f c(cl) =70kHz.

Close loop close loop.PROTECT.OPTION POST.LIB "C:\mm0355v.l" TT.UNPROTECT.op VDDVDD! 0 3.3V VSSVSS! V M11 1 VDD! VDD! PCHW=50U L=2U M22 1 VDD! VDD! PCHW=50U L=2U M VDD! PCHW=50U L=2U M VDD! PCHW=50U L=2U M53 VB5 5 VSS! NCHW=100U L=2U M64 VB6 6 VSS! NCHW=100U L=2U M75 Vi- 7 VSS!NCHW=100U L=2U M86 Vi+ 7 VSS!NCHW=100U L=2U M97 VB9 VSS! VSS!NCHW=100U L=2U M10Vo 4 VDD! VDD!PCHW=150U L=2U M11Vo VB11 VSS! VSS!NCHW=50U L=2U VBIAS5VB501.9V VBIAS6VB601.9V VBIAS9VB900.6V VBIAS1 VB V VBVi v Vin1120AC1.ACDEC k Vin2Vi+01.65v Ri11121k Rf11Vo47k.PLOTACVDB(Vo).END