The Magnetoelastic Paradox M. Rotter, A. Barcza, IPC, Universität Wien, Austria H. Michor, TU-Wien, Austria A. Lindbaum, FH-Linz, Austria M. Doerr, M.

Slides:



Advertisements
Similar presentations
The Magnetoelastic Paradox
Advertisements

Movement of Atoms [Sound, Phonons]
Prolog Numerical Modeling in Magnetism
Magnetism in Complex Systems 2009
Magnetismo y Superconductividad: Principios fundamentales, sistemas experimentales y líneas de investigación en el laboratorio de bajas temperaturas Luis.
Crystal diffraction Laue Nobel prize Max von Laue
Atomic Vibrations in Solids: phonons
Electromagnetics (ENGR 367) Magnetic Materials & Magnetization.
Junghoon Kim and Jung Hoon Han Department of Physics Sungkyunkwan University.
Second harmonic generation on multiferroics Optical spectroscopy seminar 2013 spring Orbán Ágnes, Szaller Dávid
Electronic structure of La2-xSrxCuO4 calculated by the
Experimental Techniques Magnetization Specific heat Resistivity Low temperatures Small samples (~1 mg) High magnetic fields.
Magnetic Interactions and Order-out-of-disorder in Insulating Oxides Ora Entin-Wohlman, A. Brooks Harris, Taner Yildirim Robert J. Birgeneau, Marc A. Kastner,
1 M.Rotter „Magnetostriction“ Course Lorena 2007 Theory Isotropic Thermal Expansion Phase Transitions Lagrange Strain Tensor Anisotropic Thermal Expansion.
Montek Singh COMP Sep 6,  Basics of magnetism  Nanomagnets and their coupling  Next class: ◦ Challenges and Benefits ◦ Open questions.
Exchange Bias from Double Multilayer Structures C. H. Marrows, P. Steadman, M. Ali, A. T. Hindmarch, and B. J. Hickey Department of Physics and Astronomy,
Temperature Simulations of Magnetism in Iron R.E. Cohen and S. Pella Carnegie Institution of Washington Methods LAPW:  Spin polarized DFT (collinear)
H. C. Ku Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 300, R.O.C. with: B. N. Lin, P. C. Guan, Y. C. Lin, T. Y. Chiu, M. F. Tai.
1 M.Rotter „Magnetostriction“ Course Lorena 2007 New Topics Fe-Ga Magnetic Shape Memory Effect Gd Compounds, Gd-Si RE Metals Sm, Tm MEP.
Monte Carlo Simulation of Ising Model and Phase Transition Studies
Some features of Single Layered Manganites La 1-x Sr 1+x MnO 4 G. Allodi, C. Baumann, B. Büchner, D. Cattani, R. De Renzi, P. Reutler.
Vivien Zapf National High Magnetic Field Laboratory Los Alamos National Lab Bose-Einstein Condensation and Magnetostriction in NiCl 2 -4SC(NH 2 ) 2.
Magnetism III: Magnetic Ordering
Magnetic Properties of Materials
Chapter 27 Magnetism. Introduction Our approach –Review of E&M interaction ideas –Magnetic fields & magnets (initial ideas) –Magnetic field and currents.
1 Material Electromagnetic Property Material partition under electric field Material partition under magnetic field Lorentzian model Artificial material.
Magnetic properties of a frustrated nickel cluster with a butterfly structure Introduction Crystal structure Magnetic susceptibility High field magnetization.
Monte Carlo Simulation of Ising Model and Phase Transition Studies By Gelman Evgenii.
Grazing Incidence X-ray Scattering from Patterned Nanoscale Dot Arrays D.S. Eastwood, D. Atkinson, B.K. Tanner and T.P.A. Hase Nanoscale Science and Technology.
Magnetic Material Engineering. Chapter 6: Applications in Medical and Biology Magnetic Material Engineering.
Antiferromagnetic resonance in frustrated system Ni5(TeO3)4Br2
Neutron Scattering from Geometrically Frustrated Antiferromagnets Spins on corner-sharing tetrahedra Paramagnetic phase Long Range Ordered phase (ZnCr.
Models of Ferromagnetism Ion Ivan. Contents: 1.Models of ferromagnetism: Weiss and Heisenberg 2.Magnetic domains.
Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
Lecture 20: More on the deuteron 18/11/ Analysis so far: (N.B., see Krane, Chapter 4) Quantum numbers: (J , T) = (1 +, 0) favor a 3 S 1 configuration.
 Magnetism and Neutron Scattering: A Killer Application  Magnetism in solids  Bottom Lines on Magnetic Neutron Scattering  Examples Magnetic Neutron.
Coexistence and Competition of Superconductivity and Magnetism in Ho 1-x Dy x Ni 2 B 2 C Hyeon-Jin Doh, Jae-Hyuk Choi, Heon-Jung Kim, Eun Mi Choi, H. B.
¶ CNISM-Dipartimento di Fisica “A. Volta,” Università di Pavia, Pavia, (Italy) ║ Max Planck Institute for Chemical Physics of Solids, Dresden,
Resonant magnetic x-ray scattering and Summary Resonant scattering –Why do it? –What is it? –How is it done? –Example(s) The Real World …. CaFe 2 As 2.
1 Unconventional Magnetism: Electron Liquid Crystal State and Dynamic Generation of Spin-orbit Coupling Congjun Wu C. Wu and S. C. Zhang, PRL 93,
Sept. 14 th 2004 Montauk, Long Island, NY Jason S. Gardner NIST, Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg,
Magnetic Neutron Diffraction the basic formulas
Introduction to Molecular Magnets Jason T. Haraldsen Advanced Solid State II 4/17/2007.
Model of magnetostriction Magnetoelastic behavior of rare earth based intermetallics in high magnetic fields up to 33 T M. Doerr a, M. Rotter b, J. Brooks.
The Structure and Dynamics of Solids
4. Phonons Crystal Vibrations
Post-perovskite Transition in MgSiO3
Emergent Nematic State in Iron-based Superconductors
Magnon Another Carrier of Thermal Conductivity
Y.C. Hu 1, X.S. Wu 1, J.J. Ge 1, G.F. Cheng 2 1. Nanjing National Laboratory of Microstructures, Department of Physics, Nanjing University, Nanjing ,
Thermal Properties of Materials
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
SIMULATION OF THE GROWTH OF A HETEROEPITAXIAL FILM ON A (111) ORIENTED SUBSTRATE.
Magnetic Interactions and Order-out-of-disorder in Insulating Oxides Ora Entin-Wohlman, A. Brooks Harris, Taner Yildirim Robert J. Birgeneau, Marc A. Kastner,
Spin Wave Model to study multilayered magnetic materials Sarah McIntyre.
modes Atomic Vibrations in Crystals = Phonons Hooke’s law: Vibration frequency   f = force constant, M = mass Test for phonon effects by using isotopes.
EMMI Workshop, Münster V.E. Demidov, O. Dzyapko, G. Schmitz, and S.O. Demokritov Münster, Germany G.A. Melkov, Ukraine A.N. Slavin, USA V.L.
Evolution of the orbital Peierls state with doping
Dec , 2005 The Chinese University of Hong Kong
Raman Effect The Scattering of electromagnetic radiation by matter with a change of frequency.
Temperature Dependence of Lattice Parameters
Prolog Numerical Modeling in Magnetism
Probing Nuclear Skins through Density Form Factors
Production of an S(α,β) Covariance Matrix with a Monte Carlo-Generated
Electromagnetics (ENGR 367)
MAGNETIC MATERIALS. MAGNETIC MATERIALS – Introduction MAGNETIC MATERIALS.
Magnetism and Magnetic Materials
Exchange bias and magnetocaloric effect in LaCr0. 9Ru0
Masaki Kubota, Yosuke Watanabe, Hiroshi Nakatsugawa
Neutron studies of iron-based superconductors
Presentation transcript:

The Magnetoelastic Paradox M. Rotter, A. Barcza, IPC, Universität Wien, Austria H. Michor, TU-Wien, Austria A. Lindbaum, FH-Linz, Austria M. Doerr, M. Loewenhaupt, IFP TU-Dresden, Germany B. Beuneu, LLB – Saclay, France M el Massalami, UFRJ, Brazil

2 M.Rotter „The Magnetoelastic Paradox“ Planneralm Magnetostriction Measurements 2.Magnetostriction in the Standard Model of Rare Earth Magnetism 3.The Magnetoelastic Paradox (MEP) 4.Experimental Evidence for the MEP in Gd Compounds 5.Application of Magnetic Fields - the case of GdNi 2 B 2 C 6.Outlook

3 M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006 Experimental Methods 1cm Capacitance Dilatometry X-ray Powder Diffraction Good resolution (10 -9 in dl/l) 45 T Magnetic Fields - forced magnetostriction requires single crystals Anisotropic Effects on Polycrystals (Expansion, Symmetry-Changes) bad resolution (10 -4 in dl/l) Rotter et.al. Rev. Sci. Instr. 69 (1998) 2742 Magnetostriction Measurements

4 M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006 GdRu 2 Si 2 (008) Gd Ru Si

5 M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006 (202) (220) GdRu 2 Si 2 ? ? No sign of distortion of the tetragonal plane !

6 M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006 Crystal Field TT e- + + L0L0 T<T C(N) Spontaneous Magnetostriction STANDARD MODEL OF RARE EARTH MAGNETISM Microscopic Origin of Magnetostriction: Strain dependence of magnetic interactions Exchange T<T C(N) L=0, L  0 „exchange-striction“ TT Gd 3+, S=7/2, L=0

7 M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006 No distortion (dJ 1 /d  ) Ferromagnet: J 1 >0 dV/V<0 J1J1 J1J1 Exchange striction on a Square Lattice

8 M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006 No distortion (dJ 1 /d  ) Anti-Ferromagnet with NN exchange: J 1 <0 dV/V>0 Tetragonal Distortion (dJ 1 /d  ) !!! Anti-Ferromagnet With small |J 1 | J 2 <0 dV/V=0 J1J1 J1J1 J2J2 J1J1 J2J2 J1J1 THE MAGNETOELASTIC PARADOX Antiferromagnets with L=0 below T N : Symmetry breaking distortions are expected but have NOT been found.... but in ALL experiments: distortion  <10 -4

9 M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006 T N = 24 K q=(0 ½ 0) GdCuSn

10 M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006 T N = 22.7 K <T R1 =21.2K M||[001] <T R2 =10.8K M||[110] GdAu 2 T N = 50 K GdAg 2 q=( )

11 M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006 Gd 3 Rh T N =112 K Large magnetostrictive effects on lattice constants – but NO distortion Gd 3 Ni T N =100 K

12 M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006 Spontaneous Magnetoelastic Effects in Gd Compounds A. Lindbaum, M. Rotter Handbook of Magnetic Materials Vol 14 (Buschow, Elsivier,NL) Volume Magnetostriction

13 M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006 Spontaneous Magnetoelastic Effects in Gd Compounds A. Lindbaum, M. Rotter Handbook of Magnetic Materials Vol 14 (Buschow, Elsivier,NL) Anisotropic Spontaneous Magnetostriction Ferromagnet Antiferromagnet ε T C(N) [K]

14 M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006 T N = 20 K: M||[010] <T R = 14 K: M||[0yz] q = ( ) small magnetostriction, therefore cap.-dilatometry.... GdNi 2 B 2 C ?

15 M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006 Thermal Expansion T 2T||a TNTN 1.5T 0.75T T (K) Forced Magnetostriction Orthorh. distortion !  a/a T N = 20 K: M||[010] <T R = 14 K: M||[0yz] q = ( ) GdNi 2 B 2 C

16 M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006 At H=0: Domains ? distortion  =3x10 -4 would lead to FWHM (204)+ 0.1° FWHM (211)+ 0.05° at H=0 no distortion can be found GdNi 2 B 2 C Powder Xray Diffraction.... FWHM determined by fitting ?

17 M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006 McPhase - the World of Rare Earth MagnetismMcPhase - the World of Rare Earth Magnetism McPhase is a program package for the calculation of magnetic properties of rare earth based systems. Magnetization Magnetic Phasediagrams Magnetic Structures Elastic/Inelastic/Diffuse Neutron Scattering Cross Section

18 M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006 The magnetic Hamiltonian Isotropic exchange (RKKY,...) Classical Dipole Interaction Zeeman Energy

T=2 K H mag + McPhase ?

20 M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006 Orthorhombic Distortion Standard Model of RE Mag... McPhase Simulation ? The Magnetoelastic Paradox for L=0.... demonstrated at GdNi 2 B 2 C Capacitance Dilatometry Exchange Striction Model

21 M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006 Transmutation of Gd New Methods Neutron Scattering Imaging of AFM domains with XRMS GdNi 2 Ge 2 ab-plane T = 17 K Moment direction 200 µm Anisotropy Measurements by ESR More Experiments Powder X-ray Diffraction Magnetic Neutron / X-ray Scattering Dilatometry in high Fields ToDo More Theory Apply Standard model of RE Magnetism Ab initio Calculation on MEP

Anharmonicity of lattice dynamics + Small contribution of band electrons anharmonic Potential Harmonic potential with Debye function Normal thermal Expansion

23 M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006 H  <0 Crystal Field e- + + Exchange - Striction H H  >0 Forced Magnetostriction L0L0L=0, L  0 Gd 3+, S=7/2, L=0

24 M.Rotter „The Magnetoelastic Paradox“ Planneralm 2006 Theory of Magnetostriction Crystal fieldExchange + with