CIPANP2003 K. Honscheid Ohio State The Future of Flavor Physics at Hadron Colliders CIPANP 2003 K. Honscheid Ohio State University.

Slides:



Advertisements
Similar presentations
Measurement of  David Hutchcroft, University of Liverpool BEACH’06      
Advertisements

Charm results overview1 Charm...the issues Lifetime Rare decays Mixing Semileptonic sector Hadronic decays (Dalitz plot) Leptonic decays Multi-body channels.
FPCP 2003 : 3-6 June 2003 Ecole Polytechnique, Paris Status and Prospects of ATLAS and CMS for B Physics and CP Violation Fairouz Ohlsson-Malek LPSC-Grenoble/IN2P3/ATLAS.
EPS, July  Dalitz plot of D 0   -  +  0 (EPS-208)  Kinematic distributions in  c   e + (EPS-138)  Decay rate of B 0  K * (892) +  -
ICFP 2005, Taiwan Colin Gay, Yale University B Mixing and Lifetimes from CDF Colin Gay, Yale University for the CDF II Collaboration.
16 May 2002Paul Dauncey - BaBar1 Measurements of CP asymmetries and branching fractions in B 0   +  ,  K +  ,  K + K  Paul Dauncey Imperial College,
Search for B s oscillations at D  Constraining the CKM matrix Large uncertainty Precise measurement of V td  properly constrain the CKM matrix yield.
Pakhlov Pavel (ITEP, Moscow) Why B physics is still interesting Belle detector Measurement of sin2  Rare B decays Future plans University of Lausanne.
1 B s  J/  update Lifetime Difference & Mixing phase Avdhesh Chandra for the CDF and DØ collaborations Beauty 2006 University of Oxford, UK.
Bs and Bd mixing Silas Hoffman and Georg Steinbrueck Introduction Current and future measurements B s mixing and physics beyond the SM.
16 April 2005 APS 2005 Search for exclusive two body decays of B→D s * h at Belle Luminda Kulasiri University of Cincinnati Outline Motivation Results.
1 S. Stone Syracuse Univ. May 2003 Heavy Quark Physics Far too much interesting Material to include in 40 min. Apologies in advance.
Chris Barnes, Imperial CollegeWIN 2005 B mixing at DØ B mixing at DØ WIN 2005 Delphi, Greece Chris Barnes, Imperial College.
The BaBarians are coming Neil Geddes Standard Model CP violation BaBar Sin2  The future.
Ulrich Uwer University of Heidelberg On behalf of the LHCb collaboration Beauty 2003, Carnegie Mellon University, Pittsburgh, PA, USA Physics Performance.
Donatella Lucchesi1 B Physics Review: Part II Donatella Lucchesi INFN and University of Padova RTN Workshop The 3 rd generation as a probe for new physics.
1 CDF Results on B Physics Masashi Tanaka (Argonne) The Tevatron Connection June 24th, 2005.
P Spring 2003 L14Richard Kass B mesons and CP violation CP violation has recently ( ) been observed in the decay of mesons containing a b-quark.
FPCP 2003 K. Honscheid Ohio State The BTeV Experiment: Physics and Detector FPCP 2003 K. Honscheid Ohio State University More details can be found at www-physics.mps.ohio-state.edu/~klaus/research/cipanp.pdf.
Nick Hadley Run II Physics (I) Nick Hadley The University of Maryland New Perspectives 2000 Fermilab - June 28, 2000.
W properties AT CDF J. E. Garcia INFN Pisa. Outline Corfu Summer Institute Corfu Summer Institute September 10 th 2 1.CDF detector 2.W cross section measurements.
Physics Performance of LHC-B Neville Harnew University of Oxford Beauty-97, Los Angeles October Outline Introduction The LHC-B Experiment New.
QCD 与强子物理研讨会, 2010 年 8 月 4 - 10 日,威海 Prospects of Flavor Physics at the LHC 高原宁 清华大学高能物理研究中心 2010/8/61Y. Gao, Prospects of flavor physics at the LHC.
Cano Ay, Johannes Gutenberg Universität, B mixing and flavor oscillations at DØ Cano Ay University Mainz for the DØ Collaboration 23 may.
Higgs Properties Measurement based on HZZ*4l with ATLAS
CP Violation: Recent Measurements and Perspectives for Dedicated Experiments LAFEX/CBPF March, 2001 Outline Introduction CP violation in the B sector BaBar.
M. Adinolfi - University of Bristol1/19 Valencia, 15 December 2008 High precision probes for new physics through CP-violating measurements at LHCb M. Adinolfi.
B c mass, lifetime and BR’s at CDF Masato Aoki University of Tsukuba For the CDF Collaboration International Workshop on Heavy Quarkonium BNL.
1 Performance Studies for the LHCb Experiment Performance Studies for the LHCb Experiment Marcel Merk NIKHEF Representing the LHCb collaboration 19 th.
DIS 2004, Strbske Pleso,April LHCb experiment sensitivity to CKM phases and New Physics from mixing and CP violation measurements in B decays LHCb.
CP violation measurements with the ATLAS detector E. Kneringer – University of Innsbruck on behalf of the ATLAS collaboration BEACH2012, Wichita, USA “Determination.
1 Multi-body B-decays studies in BaBar Ben Lau (Princeton University) On behalf of the B A B AR collaboration The XLIrst Rencontres de Moriond QCD and.
Gavril Giurgiu, Carnegie Mellon, FCP Nashville B s Mixing at CDF Frontiers in Contemporary Physics Nashville, May Gavril Giurgiu – for CDF.
CDF Status and Prospects for Run 2 Tara Shears. Introduction Accelerator / detector overview: Tevatron overview CDF overview Luminosity Physics prospects.
Pavel Krokovny Heidelberg University on behalf of LHCb collaboration Introduction LHCb experiment Physics results  S measurements  prospects Conclusion.
1 Highlights from Belle Jolanta Brodzicka (NO1, Department of Leptonic Interactions) SAB 2009.
Beautiful B Physics at the Tevatron IOP HEPP half day meeting Results From the Tevatron Imperial College London, 21 September 2005 Rick Jesik Imperial.
High precision and new CP violation measurements with LHCb Michael Koratzinos, CERN EPS HEP 99 Tampere,15 July 1999.
Study of exclusive radiative B decays with LHCb Galina Pakhlova, (ITEP, Moscow) for LHCb collaboration Advanced Study Institute “Physics at LHC”, LHC Praha-2003,
Prospects for B  hh at LHCb Eduardo Rodrigues On behalf of the LHCb Collaboration CKM2008 Workshop, Rome, 9-13 September 2008 LHCb.
Charm Physics Potential at BESIII Kanglin He Jan. 2004, Beijing
03/19/2006 Md. Naimuddin 1 B s Mixing at the Tevatron Md. Naimuddin (on behalf of CDF and D0 collaboration) University of Delhi Recontres de Moriond 19.
ATLAS B-Physics Reach M.Smizanska, Lancaster University, UK
LHCb: Xmas 2010 Tara Shears, On behalf of the LHCb group.
3/13/2005Sergey Burdin Moriond QCD1 Sergey Burdin (Fermilab) XXXXth Moriond QCD 3/13/05 Bs Mixing, Lifetime Difference and Rare Decays at Tevatron.
A. Drutskoy, University of Cincinnati B physics at  (5S) July 24 – 26, 2006, Moscow, Russia. on the Future of Heavy Flavor Physics ITEP Meeting B physics.
B Masses and Lifetimes at the Tevatron Satoru Uozumi University of Tsukuba Duke University.
Chunhui Chen, University of Pennsylvania 1 Heavy Flavor Production and Cross Sections at the Tevatron Heavy Flavor Production and Cross Sections at the.
M.N MinardAspen Winter Meeting LHCb Physics Program On behalf of LHCb collaboration M.N Minard (LAPP) Status LHCb ( R.Jacobson) Single arm spectrometer.
By Henry Brown Henry Brown, LHCb, IOP 10/04/13 1.
LHCb performance for B s  J/   and B d  J/  K s decays Jeroen van Hunen.
CP violation in B decays: prospects for LHCb Werner Ruckstuhl, NIKHEF, 3 July 1998.
Mike HildrethEPS/Aachen, July B Physics Results from DØ Mike Hildreth Université de Notre Dame du Lac DØ Collaboration for the DØ Collaboration.
DØ Beauty Physics in Run II Rick Jesik Imperial College BEACH 2002 V International Conference on Hyperons, Charm and Beauty Hadrons Vancouver, BC, June.
1 Experimental Particle Physics PHYS6011 Fergus Wilson, RAL 1.Introduction & Accelerators 2.Particle Interactions and Detectors (2) 3.Collider Experiments.
P Spring 2002 L16Richard Kass B mesons and CP violation CP violation has recently ( ) been observed in the decay of mesons containing a b-quark.
Prospects for at LHCb William Reece Imperial College London Physics at the LHC, 3 rd October 2008.
Beauty and charm at the LHC, Jeroen van Tilburg, FOM Veldhoven 2014 Jeroen van Tilburg Beauty and charm at the LHC: searches for TeV scale phenomena in.
1 outline ● Part I: some issues in experimental b physics ● why study b quarks? ● what does it take? ● Part II: LHCb experiment ● Part III: LHCb first.
BTeV Physics Reach LHC 2003 Symposium K. Honscheid
CMS Physics Analysis in China
Experimental Particle Physics PHYS6011 Putting it all together Lecture 4 6th May 2009 Fergus Wilson, RAL.
Overview of LHCb Poland Ukraine Brazil UK Switzerland France Spain
CP violation in Bs→ff and Bs → K*0K*0
Prospects for quarkonium studies at LHCb
B Physics at the LHC Neville Harnew University of Oxford.
Experimental Particle Physics PHYS6011 Putting it all together Lecture 4 28th April 2008 Fergus Wilson. RAL.
CMS Physics Analysis in China
B-physics at the LHC Beyond 2010, february
Top quark production cross section Top quark mass measurement
Presentation transcript:

CIPANP2003 K. Honscheid Ohio State The Future of Flavor Physics at Hadron Colliders CIPANP 2003 K. Honscheid Ohio State University

CIPANP2003 K. Honscheid Ohio State B Physics Today CKM Picture okay CP Violation observed No conflict with SM V ud V us V ub V CKM =V cd V cs V cb V td V ts V tb sin(2  ) = /

CIPANP2003 K. Honscheid Ohio State Surprising B Physics YearItemTheory Prediction ~Value # B’s 1983  b Too small to be observed ~ < 0.1ps 1 ps2x B o -B o mixing Too small to see (~ < 1%) as m top is believed to be ~30 GeV 20%2x sin(2  ) No direct prediction, but consistent with other measurements 3/410 7  >10 11 b hadrons (including B s )

CIPANP2003 K. Honscheid Ohio State B Physics at Hadron Colliders Energy2 TeV14 TeV b cross section ~100  b~500  b c cross section ~1000  b~3500  b b fraction2x x10 -3 Inst. Luminosity2x10 32 >2x10 32 Bunch spacing132 ns (396 ns)25 ns Int./crossing ( ) Luminous region 30 cm5.3 cm TevatronLHC Large cross sections Triggering is an issue All b-hadrons produced (B, B s, B c, b-baryons)

CIPANP2003 K. Honscheid Ohio State Detector Requirements From F. Teubert Vertex, decay distance Momentum PID Neutrals ( ,  0 )

CIPANP2003 K. Honscheid Ohio State CDF and D0 CDF pioneered B physics at hadron collider. New for Run II TOF (Particle ID) Detached Vertex Trigger Improved tracking D0 enters B physics New for Run II Tracking Detached Vertex Trigger (soon)

CIPANP2003 K. Honscheid Ohio State n Acceptance  |  | < 2.5 n Particle ID  ATLAS v.limited  -K separation, ~0.8s from TRD n Di-lepton trigger n Vertexing wSpecial pixel B layer R~5cm n “Low” luminosity running wLumi cm -2 s -1 wOnly 30fb -1 (3 years) wSpecialist B triggers n BUT : DAQ Bandwidth only 100 evts/s to tape for ALL physics ATLAS Atlas and CMS From N. Harnew

CIPANP2003 K. Honscheid Ohio State Forward vs. Central Geometry b production angle  230  b 100  b Multi-purpose experiments require large solid angle coverage. Central Geometry (CDF, D0, Atlas, CMS) Dedicated B experiments can take advantage of Forward geometry (BTeV, LHCb)

CIPANP2003 K. Honscheid Ohio State LHCb Light n No tracking stations in magnet region n Reduced material budget n (fringe) magnetic field in tracking station(s)

CIPANP2003 K. Honscheid Ohio State The Importance of Particle ID Purity = 84% ; Efficiency = 90% B 0  h + h -  ~17 MeV For example: B->  +  -

CIPANP2003 K. Honscheid Ohio State The BTeV Detector Beam Line Pixel Detector Vacuum Vessel 60 pixel planes inside magnet  = 5-10  m Proper time resolution: 46 fs PbWO 4 EM Calorimeter CLEO/BaBar/BELLE-like performance in a hadron Collider environment!  ~ 5 MeV  ~ 3 MeV crystals 220 mm long, 28x28 mm 2 Detached Vertex Trigger Find the primary vertex Identify tracks which miss it Calculates the significance of detachment For EVERY crossing b,b/  b

CIPANP2003 K. Honscheid Ohio State Fully simulated bb event using Geant 3 incl. multiple scattering, hadronic interactions decays in flight Kalman fitter

CIPANP2003 K. Honscheid Ohio State Efficiencies and Tagging For a requirement of at least 2 tracks detached by more than 6 , we trigger on only 1% of the beam crossings and achieve the following trigger efficiencies for these states ( int. per crossing):   efficiency; D  Dilution or (N right -N wrong )/(N right +N wrong ) Effective tagging efficiency   D 2 Extensive study for BTeV uses Opposite sign K ± Jet Charge Same side  ± (for B o ) or K ± for (B s ) Leptons Conclusion:  D 2 (B o ) = 0.10,  D 2 (B s ) = 0.13 (difference due to same side tagging) Decay efficiency(%) Decay efficiency(%) B   +  - 63 B o  K +  - 63 B s  D s K 74 B o  J/  K s 50 B -  D o K - 70 B s  J/  K * 68 B -  K s  - 27 B o  K * 

CIPANP2003 K. Honscheid Ohio State The Physics Goals There is New Physics out there: Baryon Asymmetry of Universe & by Dark Matter Hierarchy problem Plethora of fundamental parameters … B Experiments at Hadron Colliders are well positioned to: Perform precision measurements of CKM Elements with small model dependence. Search for New Physics via CP phases Search for New Physics via Rare Decays Help interpret new results found elsewhere (LHC, neutrinos) Complete a broad program in heavy flavor physics Weak decay processes, B ’s, polarization, Dalitz plots, QCD… Semileptonic decays including  b b & c quark Production Structure: B(s) spetroscopy, b-baryon states B c decays

CIPANP2003 K. Honscheid Ohio State Part 1: Is the CKM Picture correct? Use different sets of measurements to define apex of triangle (adopted from Peskin) Also have  K (CP in K L system) Magnitudes B d mixing phase B s mixing phase Can also measure  via B -  D o K -,

CIPANP2003 K. Honscheid Ohio State Measuring   Using B o         A Dalitz Plot analysis gives both sin(2  ) and cos(2  ) ( Snyder & Quinn) Measured branching ratios are: B (B       = ~10 -5 B (B      +      = ~3x10 -5 B (B       <0.5x10 -5 Snyder & Quinn showed that tagged events are sufficient Not easy to measure  0 reconstruction Not easy to analyze 9 parameter likelihood fit Slow  0 ’s Nearly empty (  polarization) Dalitz Plot for B o 

CIPANP2003 K. Honscheid Ohio State Yields for B o  Based 9.9x10 6 background events B o  +  events, S/B = 4.1 B o  o  o 780 events, S/B = 0.3   oo Background Signal m B (GeV) BoooBooo

CIPANP2003 K. Honscheid Ohio State Our Estimate of Accuracy on  Geant simulation of B o  (for 1.4x10 7 s) Example: 1000 B o  signal + backgrounds With input  =77.3 o minimum  2 non-resonant non-  bkgrd resonant non-  bkgrd  (gen) R res R non  (recon)  77.3 o o 1.6 o 77.3 o o 1.8 o 93.0 o o 1.9 o 93.0 o o 2.1 o o o 3.9 o o o 4.3 o

CIPANP2003 K. Honscheid Ohio State B s Mixing (V td /V ts )  m s (~x s ) =  ·C where C can be calculated inside the S. M. CDF sensitive to x s ~ 30  : B s ->  seen Expect  ~ 2% after Run II BTeV reaches sensitivity to x s of 80 in 3.2 years

CIPANP2003 K. Honscheid Ohio State One of several ways to determine   B s  D s K  D s  mass (GeV)  ~ 6.5 MeV/c 2  = 168  m  = 418  m B s vtx resolution (mm) D s vtx resolution (mm) ± Theoretically clean, BR ~ 10 -4

CIPANP2003 K. Honscheid Ohio State Needed: Hadronic trigger K/  separation Good proper time resolution Sensitivity depends upon relative amplitudes strong phase difference values of ,  m s  s  s For  m s =20 ps –1 :  10 o For  m s =30 ps –1 :  12 o In one year: 8k B s  D s  K  reconstructed events    from B s  D - s K +, D + s K -  (II)  From the measurement of 4 time-dependent asymmetries one gets    same order tree level amplitudes (  3 ) : large asymmetries, NP contributes unlikely From M. Musy

CIPANP2003 K. Honscheid Ohio State Measuring  In the SM the phases and magnitudes are correlated:  |V us | = ±  is the phase of V ts -> B s Mixing Good: B s -> J/   plus non-trivial angular analysis Better: B s -> CP eigenstate such as B s  J/      Silva & Wolfenstein (hep-ph/ ) Aleksan, Kayser & London

CIPANP2003 K. Honscheid Ohio State Measuring  II BTeV can reconstruct  and  ’ Yield in one year B s  J/  2,800 events with S/B = 15 B s  J/  9,800 events with S/B = 30 Error on sin(2  = With  ~ 2 o a precision measurement will require a few years.

CIPANP2003 K. Honscheid Ohio State Physics Reach (CKM) in 10 7 s Reaction B (B) (x10 -6 ) # of Events S/B Parameter Error or (Value) B s  D s K  -  8 o B s  D s  ,000 3 x s (75) B o  J/  K S J/  +  , sin(2  ) B o  J/  K o, K o    cos(2  ) ~0.5 B -  D o (K +  - ) K B -  D o (K + K - ) K ,000>10  13 o B s  J/  330 2, B s  J/  670 9, sin(2  Bo+-Bo+- 28 5, BoooBooo  ~4 o Reaction B (B) (x10 -6 ) # of Events S/B Parameter Error B-KS -B-KS  ,600 1 <4 o + BoK+-BoK+ ,  Theory err. Bo+-Bo+ ,600 3Asymmetry B o  K + K , Asymmetry 0.020

CIPANP2003 K. Honscheid Ohio State LHCb preliminary study  (pp  B c ) ~300 nb  10 9 B c / year B c  J /  BR ~10 -2 )  ~ 2% 12k events/year Background from B  J /  X and prompt J /  reduced cutting on the distance between primary vertex and B c vertex B c mesons CDF: m Bc = 6.4 +/- 0.4 GeV t Bc ~ 0.5 ps BTeV/LHCb: Precision measurements of mass, lifetime Search for CPV in B c -> J/  D + or B c -> D s D  LHCb acceptance ~30% M( J /  GeV/c 2 p (GeV)

CIPANP2003 K. Honscheid Ohio State Part II: Search for New Physics For a nice overview see: S. Stone “BTeV Physics” at

CIPANP2003 K. Honscheid Ohio State First Example: Supersymmetry Supersymmetry: In general 80 constants & 43 phases MSSM: 2 phases (Nir, hep-ph/ ) New Physics in B o mixing:  D, B o decay:  A, D o mixing:  K  ProcessQuantity SMNew Physics B o  J/  K s CP asym sin(2  )sin2(  D ) BoKsBoKs CP asym sin(2  )sin2(  D  A ) DoK-+DoK-+ CP asym 0 ~sin(  K  ) New Physics Difference  NP

CIPANP2003 K. Honscheid Ohio State Rare b Decays Search for New Physics in Loop diagrams New fermion like objects in addition to t, c or u New Gauge-like objects in addition to W, Z or g Inclusive Rare Decays including b  s  b  d  b  s +  Exclusive Rare Decays such as B    B  K* +  Dalitz plot & polarization   + - B o  K* 

CIPANP2003 K. Honscheid Ohio State Yield, S/B for Rare b Decays Reaction B (10 -6 ) Signal S/BPhysics B o  K* o  +  Polarization; Rate B-K-+-B-K-+ Rate bs+-bs+ Rate; Wilson coefficents

CIPANP2003 K. Honscheid Ohio State BTeV data compared to Burdman et al calculation Dilepton invariant mass distributions, forward-backward asymmetry discriminate among the SM and various supersymmetric theories. (Ali, Lunghi, Greub & Hiller, hep-ph/ ) One year for K* + -, enough to determine if New Physics is present Polarization in B o  K* o  +  - Ali et. al, hep-ph/

CIPANP2003 K. Honscheid Ohio State Search also for B d 0     Standard Model BR ~ 1x B s 0     Standard Model BR ~ 4x Here the General Purpose Detectors have an advantage : high p T di-muon triggering at high (1x10 34 ) luminosity. CMS : 100 fb -1 (10 7 s at cm -2 s -1 ) ~26 signal events 6.4 events background Muon trigger : 2  ’s with pT > 4 GeV  < 2.4 Rare Leptonic Decays

CIPANP2003 K. Honscheid Ohio State Another Example: Extra Dimensions Aranda & Lorenzo Diaz-Cruz, “Flavor Symmetries in Extra Dimensions” (hep-ph/ ) (Buras et al. hep-ph/ ) Extra spatial dimension is compactified at scale 1/R = 250 GeV on up No effect on |V ub /V cb |,  M d /  M s, sin(2  ) –8% – % |V td |  B s -> 

CIPANP2003 K. Honscheid Ohio State Summary Heavy quark physics at hadron colliders provides a unique opportunity to measure fundamental parameters of the Standard Model with no or only small model dependence discover new physics in CP violating amplitudes or rare decays. interpret new phenomena found elsewhere (e.g. LHC) Some scenarios are clear others will be a surprise This program requires a general purpose B detector like BTeV and LHCb with an efficient, unbiased trigger and a high performance DAQ a superb charged particle tracking system good particle identification excellent photon detection

CIPANP2003 K. Honscheid Ohio State Additional Transparencies from BTeV and LHCb Studies

CIPANP2003 K. Honscheid Ohio State   from B s  J/    from B s  J/   In SM  S     Sensitive to New Physics effects in the B s -B s system In one year: 109 k events B s  J/      19 k events B s  J/  e + e   J/  is not CP eigenstate: needs fit to angular distributions of decay final states as a function of proper time Assuming  m s =20 ps –1 :  2 o   36±1 fs From M. Musy

CIPANP2003 K. Honscheid Ohio State Current status of LHCb Physics Reach in 1 year (2fb –1 ) ChannelYield Precision *  B d  J /  K s 119 k  0.6 o  B s  D s K B d  , B s  KK 8 k 27 k, 35 k  10 o  3 o  Bd  Bd   27 k  5 o - 10 o  B s  J /  128 k  2 o |V td /V ts  B s  D s  72 k  m s up to 58 ps  rare decaysB d  K   20 k All numbers will be updated together with more channels in the re-optimization LHCb TDR (September 2003) From M. Musy

CIPANP2003 K. Honscheid Ohio State A simplified trigger comparison From U. Egede

CIPANP2003 K. Honscheid Ohio State Unitarity Triangles B d 0     B d 0    B d 0  DK *0 B S 0  D S K B d 0  D*  B S 0  D S  B d 0  J/  K S 0 B S 0  J/  From N. Harnew 