Qiao,G.J. Dept. of Astronomy, Peking Univ. Collaborators: Zhang, B.( University of Nevada ), Xu, R.X.(PKU), Han,J.L.(NAOC), Lin,W.P.(SHO),Lee,K.J.(PKU)

Slides:



Advertisements
Similar presentations
Pulsars Multi-Accelerator Radiation model Peking University.
Advertisements

Radio and Gamma-Ray Beams from Pulsars R. N. Manchester CSIRO Astronomy and Space Science Australia Telescope National Facility, Sydney Summary Pulse profiles.
Pulsar High Energy Emission Models: What Works and What Doesn't “Standard” outer magnetosphere models - successes Shortcomings of the models Next steps?
5th Science AGILE Workshop, June Observations of pulsars with MAGIC Marcos López (INFN/Padova) on behalf of the MAGIC collaboration.
2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era 1 Modeling the Dynamical and Radiative Evolution of a Pulsar Wind Nebula inside.
The Fraction Geminga Alice K. Harding NASA Goddard Space Flight Center
Measuring Dispersion in Signals from the Crab Pulsar Jared Crossley National Radio Astronomy Observatory Tim Hankins & Jean Eilek New Mexico Tech Jared.
Study on polarization of high- energy photons from the Crab pulsar 〇 J. Takata (TIARA-NTHU/ASIAA,Taiwan) H.-K. Chang (NTH Univ., Taiwan) K.S. Cheng (HK.
Pulsars Basic Properties. Supernova Explosion => Neutron Stars part of angular momentum carried away by shell field lines frozen into solar plasma (surface.
The Phase-Resolved Spectra of the Crab Pulsar Jianjun Jia Jan 3, 2006.
Neutron Stars and Black Holes
Single Pulse Studies of Pulsar Emission Mechanisms Joanna Rankin Physics & Astronomy Department, University of Vermont Frontiers of Astronomy with the.
Light. Photons The photon is the gauge boson of the electromagnetic force. –Massless –Stable –Interacts with charged particles. Photon velocity depends.
Matthew Kerr Stanford University / KIPAC.
Arunava Bhadra High Energy & Cosmic Ray Research Ctr. North Bengal University TeV Neutrinos and Gamma rays from Pulsars/Magnetars.
Fermi-LAT Study of Cosmic-Ray Gradient in the Outer Galaxy --- Fermi-LAT view of the 3 rd Quadrant --- Tsunefumi Mizuno (Hiroshima Univ.), Luigi Tibaldo.
On the Emission Site of Gamma Rays from Pulsars Hsiang-Kuang Chang and Cheng Ho 徐佩君清華大學天文研究所.
Pei-Chun Hsu¹, Kouichi Hirotani², and Hsiang-Kuang Chang¹ 1 Department of Physics and Institute of Astronomy, National Tsing Hua University ASIAA/National.
YERAC On the structure of radio pulsar magnetospheres On the structure of radio pulsar magnetospheres Igor F. Malov, Еlena Nikitina Pushchino Radio.
A THREE-DIMENSIONAL OUTER MAGETOSPHERIC MODEL FOR GAMMA-RAY PULSARS : GEOMETRY, PAIR PRODUCTION, EMISSION MORPHOLOGIES, AND PHASE- RESOLVED SPECTRA K.S.CHENG,
Cohesive Properties of Highly Magnetized Neutron Star Surfaces Zach Medin July 19, 2006.
A brief introduction- Outer gap model of r-ray pulsar Department of Physics National Tsing Hua University Lun-Wen Yeh
The 511 keV Annihilation Emission From The Galactic Center Department of Physics National Tsing Hua University G.T. Chen 2007/1/2.
Gamma-ray emission mechanism in pulsar magnetosphere – electrodynamics and models 徐佩君 清大天文所.
Integrated Profile Polarization : Observations and Speculations
1 Arecibo Synergy with GLAST (and other gamma-ray telescopes) Frontiers of Astronomy with the World’s Largest Radio Telescope 12 September 2007 Dave Thompson.
张力 张力 2003 年 10 月 21 日于北京 2003 年 10 月 21 日于北京 Gamma-ray Luminosity and Death Lines of Pulsars with Outer Gaps.
Properties of Light.
ATUC Science Meeting 24 th Oct 2011 Radio emission from CU Virginis Kitty Lo Collaborators: Justin Bray, George Hobbs, Tara Murphy, Bryan Gaensler, Don.
Giant Radio Pulses Radio Properties Mechanism High Energy Properties With Astrosat & LOFT.
Introduction A pulsar magnetosphere can be divided into two zones: The closed zone filled with a dense plasma co-rotating with the neutron star (NS), and.
The X-ray Universe Sarah Bank Presented July 22, 2004.
Aristeidis Noutsos University of Manchester. Pulsar Polarization Pulsar radiation is elliptically polarised with a high degree of linear polarization.
1 Study on Pulsar Multi-wavelength Emission Hong Guang Wang Center for Astrophysics, Guangzhou University  Introduction  Multi-wavelength emission regions.
What makes pulsars and magnetars radio laud? George Melikidze J. Kepler Institute of Astronomy, University of Zielona Góra Abastumani Astrophysical Observatory,
Institute of Radio Astronomy of NASU, Kharkov
Tsunefumi Mizuno 1 Fermi_Diffuse_ASJ_2010Mar.ppt Fermi-LAT Study of Galactic Cosmic-Ray Distribution -- CRs in the Outer Galaxy -- Tsunefumi Mizuno Hiroshima.
Welcome from Peking University! “Pulsars and Quark Stars” R. X. Xu Astronomy Dept., School of Physics 4 groups: Galaxies.
A Non-Radial Oscillation Model for Radio Pulsars In collaboration with Dr. J. Christopher Clemens University of North Carolina at Chapel Hill.
Pulsars: The radio/gamma-ray Connection Prospects for pulsar studies with AGILE and GLAST Synergy with radio telescopes –Timing and follow-up –Radio vs.
Name EPOCH (Hz) (10 –12 s –2 ) Data Range (MJD) J (4)– (1)55666 – (7)– (5)55912.
Associations of H.E.S.S. VHE  -ray sources with Pulsar Wind Nebulae Yves Gallant (LPTA, U. Montpellier II, France) for the H.E.S.S. Collaboration “The.
AAS, LB 01/06 Press Conf -1 A Plethora of Pulsars Roger W. Romani Stanford University Alice K. Harding GSFC for the Fermi LAT collaboration.
Pulsar Radio Emission Height: PSR B Zhang Hui National Astronomical Observatories, Chinese Academic of Science Sino-German Bilateral Workshop on.
The Structure of the Pulsar Magnetosphere via Particle Simulation S. Shibata (1), T. Wada (2), S. Yuki (3), and M. Umizaki (3) (1)Department of Phys.Yamagata.
Gamma-ray production in Be-XPBs Brian van Soelen University of the Free State supervisor P.J. Meintjes.
Neutrinos produced by heavy nuclei injected by the pulsars in massive binaries Marek Bartosik & W. Bednarek, A. Sierpowska Erice ISCRA 2004.
Radio Sounding of the Near-Sun Plasma Using Polarized Pulsar Pulses I.V.Chashei, T.V.Smirnova, V.I.Shishov Pushchino Radio Astronomy Obsertvatory, Astrospace.
Scuola nazionale de Astrofisica Radio Pulsars 1: Pulsar Basics
Gamma-Ray Emission from Pulsars
Pulsar Acceleration: The Chicken or the Egg? Alice Harding NASA Goddard Space Flight Center.
Low frequency pulsar science, 25 th June Wide profile drifting pulsars : Wide profile drifting pulsars : an elegant way to probe pulsar magnetosphere Low.
Polarized Radio Emission within Pulsar Magnetosphere & Pulsar Observation with JMS 66m PengFei Wang PengFei Wang ( 王鹏飞 )NAOC
To find strange star with FAST R. X. Xu Renxin Xu ( 徐仁新 ) School of Physics, Peking University ( ) Frontiers in Radio Astronomy.
Observational constraints on theories of pulsations Can we expect to learn something fundamental about neutron stars from their variable radio emission?
Pulsars and PWNs as sources of high-energy particles Jarosław Dyks CAMK, Toruń.
Exploring  -ray emission models using millisecond pulsars in the Second Fermi Pulsar Catalog Alice K. Harding With T. Johnson, C. Venter, E. Grove Latest.
Collaborators Peking University Guojun Qiao, Renxin Xu, Jiguang Lu, Kejia Lee Qian Xuesen Laboratory of Space Technology Yuanjie Du China West Normal University.
A Fan Beam Model for Radio Pulsars Hongguang Wang (王洪光) Center for Astrophysics, Guangzhou University 广州大学天体物理中心 Fast Pulsar Symposium 4.
the global pulsar magnetosphere
Observation of Pulsars and Plerions with MAGIC
Towards a more perfect wind braking model
Basic Properties By Dr. Lohse, University of Berlin
with Xiang-Yu Wang, Ruo-Yu Liu, Fang-Kun Peng and P.H.T. Tam
Wave Propagation Effects in Pulsar Magnetospheres
Pulsar Search Collaboratory
Pulsar Polarization studies at low radio frequencies
the global pulsar magnetosphere
Polarization Properties of an Eclipsing Pulsar
Pulse Nulling and Subpulse Drifting Properties in Pulsars
Presentation transcript:

Qiao,G.J. Dept. of Astronomy, Peking Univ. Collaborators: Zhang, B.( University of Nevada ), Xu, R.X.(PKU), Han,J.L.(NAOC), Lin,W.P.(SHO),Lee,K.J.(PKU) Xia,X.Y. Radio and Gamma-ray emission of pulsars

I. Radio emission (Inverse Compton scattering model: ICS ) II. Inner annular gap & gamma-ray emission Radio + Gamma ray emission III. Pulsar: Neuron stars or Strange stars?

Core beam Beam-frequency Mode changing Bi-driftingGamma-ray Core gapAnnular gap Strange stars

Pulsar emission beams

Observations

Emission beams Rankin, 1983, ApJ,274,333

Theories

Ruderman & Sutherland (RS) Model Ruderman & Shutherland,1975, ApJ,196,51

Emission beams in RS model Ruderman & Sutherland, 1975 Emission beams Hollow cone only!

Obs. & Theory(ICS) (1) Core + Cones (2) Different components come from different locations (3) Pulse profile shapes changing with freq. (4) Mode changing (5) Bi-drifting  Pulsars: NS or Strange stars?

ICS Model: emission beams ⇒ Core +cones Qiao, 1992

ICS: shift of emission beams Different emission location→shift of the emission beams Qiao & Lin, 1998, A&A,333,172

Poln: Beam shift→PA jumps Xu, Qiao & Han, 1997, AA

Poln: PA jump Xu, Qiao & Han, 1997, AA

ICS model: inner gap sparking → ω 0 ω=2γ 2 ω 0 (1-βCosθ i ) Qiao & Lin, 1998, A&A

Core beam Beam-frequency Mode changing Bi-driftingGamma-ray Core gapAnnular gap Strange stars

RS model Qiao,Liu, Zhang,& Han, 2001,AA Lyne & Manchester (1988) & Sieber et al. (1975),Kramer,(1994)

“S” shape PA & Obs.

Poln of integrated pulse in ICS V —circular poln L —Linear poln I —Total Intensity Position angle Xu,Liu,Han,Qiao, 2000, ApJ

Core beam Beam-frequency Mode changing Bi-driftingGamma-ray Core gapAnnular gap Strange stars

Mode changing of pulsars Rankin, 1986

Zhang,Qiao,Lin,Han, 1997 Tree mode of sparking Thermal ICS Curvature radiation Resonant ICS

Mode change pulsars Zhang,Qiao,Lin,Han, 1997,ApJ Zhang,Qiao, Han, 1997,ApJ

Core beam Beam-frequency Mode changing Bi-driftingGamma-ray Core gapAnnular gap Strange stars

☆ Polar cap (polar gap) Basic Observational facts vs Theories ☆ Radio--- Gamma-rays: Obs. Outer gapGamma-rayRadio

The magnetosphere of a NS +

Inner annular gap

Qiao,Lee,Wang,Xu, Han, 2004a,ApJL

I nner annular gap Qiao,Lee,Wang,Xu, 2004a, ApJL

Inner Annular Gap Qiao,Lee,Wang,Xu, 2004a, ApJL

Core beam Beam-frequency Mode changing Bi-driftingGamma-ray Core gapAnnular gap Strange stars

Mclaughlin 2003,astr-ph/ Bi-drifting: Obs.

Drifting subpulses PULSE LONGITUDE Drifting subpulses Taylor et al. (1975) Backer (1973)

Accelerators: Inner vacuum gap (Ruderman & Sutherland 1975) requiring high binding energy of charges on stellar surface Drifting sub-pulses Xu,Qiao Zhang, 1999,ApJL,522,L112 Deshpannde & Rankin, 1999,ApJ, 524,1008

Inner Annular Gap : V= c E x B / B^2

Bi-drifting: fitting Mclaughlin 2003,astr-ph/ Qiao,Lee,Zhang,Xu,Wang,2004b, ApJL

Neutron stars: Binding energy ≤ 10 KeV no gap can be formed!!! Binding energy > 10 KeV only one gap cab be formed: core or annular gap Strange stars: both core & annular gap can be Formed !

● Annular Gap mole: different Gamma-ray pulsars can be fitted ● Pulsars: Strange stars? ● Observational check: Polarization at high energy bands ● Theory: two caps=two gap? Conclusion and discussion 

Core beam Beam-frequency Mode changing Bi-driftingGamma-ray Core flowAnnular flow Neutron stars ? ? ? Qiao,Lee,Zhang, Wang & Xu,,2005,

Can free flow produce drifting pulses? If not, can we distinguish NS from SS? ♣ More drifting phenomena need to be obs. ♣ Sub-millisecond pulsar need to be found? 100 m telescope will be helpful for the research above!  

? 100m at Effelsberg New Green Bank Telescope Jodrell Bank KaShi,China ?

Thank you !

Multi-cones in the ICS model Qiao,Wang,Wang,Xu, 2002,ChJAA

Multi-frequency fitting of PSR J Qiao,Wang,Wang,Xu, 2002,ChJAA

Magnetosphere of pulsars Goldreich & Julian (1969)

Charge density — ρ GJ (Goldreich & Julian 1969 ) Acceleration electric field Acceleration electric field

I nner annular gap Qiao,Lee,Wang,Xu, Han, 2004

Ruderman & Sutherland, 1975 Neutron stars: binding energy > 10KeV Can’t form core and annular gap at the same time!

Strange stars: binding energy << 10KeV Can form core and annular gap at the same time!

Interstellar Dispersion Ionised gas in the interstellar medium causes lower radio frequencies to arrive at the Earth with a small delay compared to higher frequencies. Given a model for the distribution of ionised gas in the Galaxy, the amount of delay can be used to estimate the distance to the pulsar. P--period DM--dispersion measure

Crab pulsar

Vela Pulsar

Geminga

Inner annular gap Qiao,Lee,Wang,Xu, 2003

PA jumps: individual pulses ??? Stinebring et at. 1984

OPM  Depolarization (Xu.R.X)  Orthogonal Poln Mode (OPM) →Depolarization (Low LP] ??? Or  Low LP →OPM ???

Daugherty & Lerche, 1975 The “Death line” of radio pulsars

The Death line of radio pulsars

Death and appearance line Qiao et al.,2003 Sparking condition ! Does not Hubble line!

The Death line of radio pulsars Qiao & Zhang,1996

The magnetosphere of a NS Critical field line NCS

Low L Poln→OPM ? Xu & Qiao, 2000, Science in China

Outer Gap Model Emission beams: 1 &4 : toward out side 2 & 3 : toward inside

Muslimov & Harding, 2003 Slot gap model

Beams in ICS model Type I Type II Qiao,Liu,Zhang & Han, 2001

Obs. & ICS : Type I a Obs.ICS Qiao,Liu, Zhang,& Han, 2001,AA Lyne & Manchester (1988) & Sieber et al. (1975)

Obs. & ICS: Type Ib Obs. ICS Qiao,Liu, Zhang,& Han, 2001,AA Kramer (1994).

Obs. & ICS : Type IIa ICS Obs. Qiao,Liu, Zhang,& Han, 2001,AAPhillips & Wolszczan (1992).

Magnetospere of pulsars Am--mass of ion, Z-charge of ion Outer gap,  1 Space charge limited flow Inner gap

Holloway 1975 MN

Poln. of Individual pulses in ICS model Xu,Liu,Han,Qiao, 2000, ApJ

Radio emission of pulsars Observations & Theories ☆ Emission beams: Core+Cones Emission locations ☆ Polarization: linear, circular, “orthogonal mode” ☆ Pulse profiles changing with frequencies

Rankin (1983, 1993) Gil & Krawczyk 1996; Mitra & Deshpande 1999; Gangadhara & Gupta 2001,  Lyne & Manchester 1988 Han & Manchester 2001  Core and Cones

ω=2γ 2 ω 0 (1-βCosθ i ) ICS model: The low frequency wave can Propagate near the surface Qiao & Lin, 1998, AA

Polar Cap Model

Inner annular gap Qiao,Lee,Wang,Xu, 2003

Gamma-ray +radio emission Radio + Gamma ray emission model ☆ Basic picture ☆ Pulse profiles fitting: radio + Gamma-rays

Gamma-ray emission of pulsars ● Current models ☆ Polar cap model ☆ Outer gap model ● Radio + Gamma ray emission model ☆ Basic picture ☆ Pulse profiles fitting: radio + Gamma-rays

Pulsars are broad-band emitters (gamma-ray, X- ray, optical, radio) Pulsars must be particle accelerators Two preferred acceleration regions: --- Polar cap region --- Outer gap region Pulsar Gaps

● Gamma-ray OBS. Of Radio Pulsars

Janssenet al. astr-ph/ : PSR B