Second Law of Thermodynamics.  No cyclic process that converts heat entirely into work is possible.  W can never be equal to Q.  Some energy must always.

Slides:



Advertisements
Similar presentations
QUICK QUIZ 22.1 (end of section 22.1)
Advertisements

Thermodynamics.
The Laws of Thermodynamics
This Week > POWER CYCLES
Heat Engines. The Heat Engine  A heat engine typically uses energy provided in the form of heat to do work and then exhausts the heat which cannot.
Chapter 10 Thermodynamics
The Zeroth and First Laws. Mechanical energy includes both kinetic and potential energy. Kinetic energy can be changed to potential energy and vice versa.
Chapter 18 The Second Law of Thermodynamics. Irreversible Processes Irreversible Processes: always found to proceed in one direction Examples: free expansion.
Second Law of Thermodynamics Physics 202 Professor Lee Carkner Lecture 18.
The Advanced Chemical Engineering Thermodynamics The second law of thermodynamics Q&A_-5- 10/13/2005(5) Ji-Sheng Chang.
Second Law Thermodynamics Professor Lee Carkner Lecture 11.
Thermo & Stat Mech - Spring 2006 Class 5 1 Thermodynamics and Statistical Mechanics Heat Engines and Refrigerators.
Physics I The Second Law of Thermodynamics Prof. WAN, Xin
Thermodynamic Cycles Air-standard analysis is a simplification of the real cycle that includes the following assumptions: 1) Working fluid consists of.
Chapter Thermodynamics
The Laws of Thermodynamics
Warm up!  What is the difference between Isothermal and Adiabatic?  Describe the difference using the relationship between Internal energy(  U), heat(Q),
Reversible Processes The second law of thermodynamics state that no heat engine can have an efficiency of 100%. Then one may ask, what is the highest efficiency.
Lecture Outline Chapter 18 Physics, 4th Edition James S. Walker
Thermodynamics AP Physics B. Thermal Equlibrium The state in which 2 bodies in physical contact with each other have identical temperatures. No heat flows.
Dr.Salwa Al Saleh Lecture 9 Thermodynamic Systems Specific Heat Capacities Zeroth Law First Law.
THERMODYNAMICS Branch of science which deals with the processes involving heat and temperature inter conversion of heat and other forms of energy.
Preview Objectives Heat, Work, and Internal Energy Thermodynamic Processes Chapter 10 Section 1 Relationships Between Heat and Work.
Chapter 15: Thermodynamics
The Laws of Thermodynamics
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Chapter 10 Heat, Work, and Internal Energy Heat and work are energy.
Thermodynamics Chapter 24. Topics Thermodynamics –First law –Second law Adiabatic Processes Heat Engines Carnot Efficiency Entropy.
ENGR 2213 Thermodynamics F. C. Lai School of Aerospace and Mechanical Engineering University of Oklahoma.
Laws of Thermodynamics Thermal Physics, Lecture 4.
Heat Engines and The Carnot Cycle. First Statement of the Second Law of Thermodynamics The first statement of the second law is a statement from common.
Thermodynamics The First Law of Thermodynamics Thermal Processes that Utilize an Ideal Gas The Second Law of Thermodynamics Heat Engines Carnot’s Principle.
The Second Law of Thermodynamics Chapter 6. The Second Law  The second law of thermodynamics states that processes occur in a certain direction, not.
Lecture Outline Chapter 12 College Physics, 7 th Edition Wilson / Buffa / Lou © 2010 Pearson Education, Inc.
Sajjad Ahmed Memon S.S./ Health Physicist NIMRA 1.
The internal energy of a substance can be changed in different ways. Work can transfer energy to a substance and increase its internal energy.
Preview Objectives Heat, Work, and Internal Energy Thermodynamic Processes Chapter 10 Section 1 Relationships Between Heat and Work.
Thermodynamics Physics H Mr. Padilla Thermodynamics The study of heat and its transformation into mechanical energy. Foundation – Conservation of energy.
Preview Objectives Heat, Work, and Internal Energy Thermodynamic Processes Chapter 10 Section 1 Relationships Between Heat and Work.
Chapter 13: Thermodynamics
Chapter 10 Preview Objectives Heat, Work, and Internal Energy
CHAPTER 15 Thermodynamics Thermodynamic Systems and Their Surroundings Thermodynamics is the branch of physics that is built upon the fundamental.
MME 2009 Metallurgical Thermodynamics
PHY1039 Properties of Matter Heat Engines, Thermodynamic Efficiency, and Carnot Cycles April 30 and May 3, 2012 Lectures 17 and 18.
Thermodynamics Internal energy of a system can be increased either by adding energy to the system or by doing work on the system Remember internal energy.
Presentation on HEAT ENGINE PREPARED BY: CHAUHAN SATISH(EN. NO: ) GAUTAM ASHISH(EN. NO: ) KETUL PATEL(EN. NO: ) SUB:
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Section 1 Relationships Between Heat and Work Chapter 10 Objectives.
1 Heat Engines and Refregerators Readings: Chapter 19.
2 nd Law of Thermodynamics Heat Engines. 2 nd Law Heat flows naturally from high temperature to low temperature, never in reverse.
Thermodynamics Thermodynamics is a branch of physics concerned with heat and temperature and their relation to energy and work.
Thermodynamic Processes
Chapter 11 Thermodynamics Heat and Work and Internal Energy o Heat = Work and therefore can be converted back and forth o Work  heat if work.
Thermodynamics II Thermodynamics II. THTH TCTC QHQH QCQC W HEAT ENGINE THTH TCTC QHQH QCQC W REFRIGERATOR system l system taken in closed cycle   U.
Lecture 26: Thermodynamics II l Heat Engines l Refrigerators l Entropy l 2 nd Law of Thermodynamics l Carnot Engines.
Chapter 12 Laws of Thermodynamics. Chapter 12 Objectives Internal energy vs heat Work done on or by a system Adiabatic process 1 st Law of Thermodynamics.
Chapter 20 - Thermodynamics A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University © 2007.
Second law of thermodynamics. The Second Law of Thermodynamics.
Unit 61: Engineering Thermodynamics Lesson 9: Carnot Engine Cycles.
Heat Engines A gasoline engine is a form of a heat engine, e.g. a 4-stroke engine INTAKE stroke: the piston descends from the top to the bottom of the.
Work in Thermodynamic Processes
1 3E-03 Fire Syringe RAPID COMPRESSION IS ADIABATIC GIVING RAPID RISE OF AIR TEMPERATURE IN THE CHAMBER WHICH EXCEEDS THE IGNITION TEMPERATURE OF THE FLAMMABLE.
Learning Goals for Chapter 20 Looking forward at … the difference between reversible and irreversible processes. the physics of internal-combustion engines.
Lecture 27Purdue University, Physics 2201 Lecture 27 Thermodynamics II Physics 220.
110 1.
Introduction To Thermodynamics
Heat Engines, Entropy, & the 2nd Law of Thermodynamics
Chapter 10-3 The Second Law of Thermodynamics
Active Figure The Carnot cycle
Thermodynamics Section 1.
Presentation transcript:

Second Law of Thermodynamics

 No cyclic process that converts heat entirely into work is possible.  W can never be equal to Q.  Some energy must always be transferred as heat to the system’s surrounding.

Cyclic Processes  A thermodynamic process in which a system returns to the same conditions under which it started  In a cyclic process, the system’s properties at the end of the process are identical to the system’s properties before the process took place.  The change in internal energy is zero.

Efficiency  Efficiency is a measure of how well an engine operates.  Efficiency=W net = Q h -Q c = 1- Q h  Q h = energy removed as heat  Q c = energy added as heat QhQh QhQh QcQc

Heat Engine  Find the efficiency of a gasoline engine, that during one cycle received 204 J of energy from combustion and loses 153J as heat to the exhaust.  Q h = 204 J  Q c = 153 J

Heat Engine  Choose an equation  1- Q c /Q h  1-153/204  =.250

Carnot Cycle  The Carnot cycle is a particular thermodynamic cycle proposed by Nicolas Léonard Sadi Carnot in 1824 and expanded by Benoit Paul Émile Clapeyron in the 1830s and 40s. A system undergoing a Carnot cycle is then a (hypothetical) Carnot heat engine.thermodynamic cycleNicolas Léonard Sadi CarnotBenoit Paul Émile Clapeyron Carnot heat engine  A heat engine acts by transferring energy from a warm region to a cool region of space and, in the process, converting some of that energy to mechanical work. The cycle may also be reversed. The system may be worked upon by an external force, and in the process, it can transfer thermal energy from a cooler system to a warmer one, thereby acting as a heat pump rather than a heat engine.heat pump

 What makes the Carnot cycle special, is that it is the most efficient existing cycle capable of converting a given amount of thermal energy into work or, conversely, for using a given amount of work for refrigeration purposes.

The Carnot cycle when acting as a heat engine consists of the following steps:  1. Reversible isothermal expansion of the gas at the "hot" temperature, TH (isothermal heat addition). During this step (A to B on Figure 1, 1 to 2 in Figure 2) the expanding gas makes the piston work on the surroundings. The gas expansion is propelled by absorption of quantity Q1 of heat from the high temperature reservoir.isothermal

 2.Isentropic (Reversible adiabatic) expansion of the gas (isentropic work output). For this step (B to C on Figure 1, 2 to 3 in Figure 2) the piston and cylinder are assumed to be thermally insulated, thus they neither gain nor lose heat. The gas continues to expand, working on the surroundings. The gas expansion causes it to cool to the "cold" temperature, TCIsentropicReversible adiabatic

 3. Reversible isothermal compression of the gas at the "cold" temperature, TC. (isothermal heat rejection) (C to D on Figure 1, 3 to 4 on Figure 2) Now the surroundings do work on the gas, causing quantity Q2 of heat to flow out of the gas to the low temperature reservoir.

 4. Isentropic compression of the gas(isentropic work input). (D to A on Figure 1, 4 to 1 in Figure 2) Once again the piston and cylinder are assumed to be thermally insulated. During this step, the surroundings do work on the gas, compressing it and causing the temperature to rise to TH. At this point the gas is in the same state as at the start of step 1.

A real engine on the right and a Carnot engine on the left