3.7 Modeling and Optimization

Slides:



Advertisements
Similar presentations
4.4 Optimization Buffalo Bills Ranch, North Platte, Nebraska Created by Greg Kelly, Hanford High School, Richland, Washington Revised by Terry Luskin,
Advertisements

Guidelines for Solving Applied Minimum and Maximum Problems 1.Identify all given quantities and quantities to be determined. If possible, make a sketch.
Optimization 4.7. A Classic Problem You have 40 feet of fence to enclose a rectangular garden along the side of a barn. What is the maximum area that.
4.4 Optimization Finding Optimum Values. A Classic Problem You have 40 feet of fence to enclose a rectangular garden. What is the maximum area that you.
Reminder: The Extreme Value Theorem states that every continuous function on a closed interval has both a maximum and a minimum value on that interval.
4.5 Optimization Problems Steps in solving Optimization Problems 1.Understand the Problem Ask yourself: What is unknown? What are the given quantities?
4.6 Optimization The goal is to maximize or minimize a given quantity subject to a constraint. Must identify the quantity to be optimized – along with.
Applications of Extrema Lesson 6.2. A Rancher Problem You have 500 feet of fencing for a corral What is the best configuration (dimensions) for a rectangular.
Applied Max and Min Problems Objective: To use the methods of this chapter to solve applied optimization problems.
CHAPTER 3 SECTION 3.7 OPTIMIZATION PROBLEMS. Applying Our Concepts We know about max and min … Now how can we use those principles?
Applied Max and Min Problems
Section 14.2 Application of Extrema
Section 4.4: Modeling and Optimization
{ ln x for 0 < x < 2 x2 ln 2 for 2 < x < 4 If f(x) =
Do Now: ….. greatest profit ….. least cost ….. largest ….. smallest
4.7 Optimization Problems
Lesson 4-7 Optimization Problems. Ice Breaker Using a blank piece of paper: Find the extrema (maximum) of A(w) = 2400w – 2w² A’(w) = 2400 – 4w A’(w) =
1.Read 3. Identify the known quantities and the unknowns. Use a variable. 2.Identify the quantity to be optimized. Write a model for this quantity. Use.
4.4 Modeling and Optimization Buffalo Bill’s Ranch, North Platte, Nebraska Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly,
Optimization. Objective  To solve applications of optimization problems  TS: Making decisions after reflection and review.
4.7 Optimization Buffalo Bill’s Ranch, North Platte, Nebraska Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 1999.
Miss Battaglia AB/BC Calculus. We need to enclose a field with a fence. We have 500 feet of fencing material and a building is on one side of the field.
Optimization Section 4.7 Optimization the process of finding an optimal value – either a maximum or a minimum under strict conditions.
3.7 Optimization Buffalo Bill’s Ranch, North Platte, Nebraska Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 1999.
Warmup- no calculator 1) 2). 4.4: Modeling and Optimization.
Section 4.5 Optimization and Modeling. Steps in Solving Optimization Problems 1.Understand the problem: The first step is to read the problem carefully.
Warm up 9/10/14 a) Find all relative extrema using the 2 nd derivative test: b) Find any points of inflection and discuss the concavity of the graph.
4.1 Extreme Values of Functions
Optimization Problems Example 1: A rancher has 300 yards of fencing material and wants to use it to enclose a rectangular region. Suppose the above region.
Optimization Problems
Optimization Problems
Sir Isaac Newton 1643 – 1727 Sir Isaac Newton 1643 – 1727 Isaac Newton was the greatest English mathematician of his generation. He laid the foundation.
Section 4.7. Optimization – the process of finding an optimal value- either a maximum or a minimum under strict conditions Problem Solving Strategy –
Copyright © Cengage Learning. All rights reserved. Applications of Differentiation.
Applied max and min. 12” by 12” sheet of cardboard Find the box with the most volume. V = x(12 - 2x)(12 - 2x)
Optimization Problems Section 4-4. Example  What is the maximum area of a rectangle with a fixed perimeter of 880 cm? In this instance we want to optimize.
A25 & 26-Optimization (max & min problems). Guidelines for Solving Applied Minimum and Maximum Problems 1.Identify all given quantities and quantities.
4.4 Modeling and Optimization, p. 219 AP Calculus AB/BC.
Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Maximum-Minimum (Optimization) Problems OBJECTIVE  Solve maximum and minimum.
3.7 Optimization Problems Buffalo Bill’s Ranch, North Platte, Nebraska Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 1999.
4.4 Optimization Buffalo Bill’s Ranch, North Platte, Nebraska Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 1999.
4.4 Optimization Buffalo Bill’s Ranch, North Platte, Nebraska Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 1999 With additional.
Optimization Problems. A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He needs no fence along.
Chapter 12 Graphs and the Derivative Abbas Masum.
Optimization Buffalo Bill’s Ranch, North Platte, Nebraska
OPTIMIZATION PROBLEMS
5-4 Day 1 modeling & optimization
4.4 Optimization Buffalo Bill’s Ranch, North Platte, Nebraska
4.7 Modeling and Optimization
Applied Max and Min Problems
Optimization Chapter 4.4.
4.6 Optimization The goal is to maximize or minimize a given quantity subject to a constraint. Must identify the quantity to be optimized – along with.
Optimization Problems
More About Optimization
Lesson 4-4: Modeling and Optimization
4.6 Optimization Buffalo Bill’s Ranch, North Platte, Nebraska
AP Calculus BC September 29, 2016.
Optimization Problems
Optimization Problems
3.7 Optimization Problems
Applied Minimum and Maximum
Optimization Rizzi – Calc BC.
4.7 Optimization Problems.
Optimization Problems
4.4 Modeling and Optimization
5.4 Modeling and Optimization
3.7 Optimization.
3.7 Optimization Problems
4.5 Optimization Problems
3.7 Optimization Problems
Presentation transcript:

3.7 Modeling and Optimization Buffalo Bill’s Ranch, North Platte, Nebraska Greg Kelly, Hanford High School, Richland, Washington Photo by Vickie Kelly, 1999

A Classic Problem You have 40 feet of fence to enclose a rectangular garden along the side of a barn. What is the maximum area that you can enclose? There must be a local maximum here, since the endpoints are minimums.

A Classic Problem You have 40 feet of fence to enclose a rectangular garden along the side of a barn. What is the maximum area that you can enclose?

Procedure for Solving Optimization Problems Assign symbols to all given quantities and quantities to be determined. Write a primary equation for the quantity to be maximized or minimized. Reduce the primary equation to one having ONE independent variable. This may involve the use of secondary equation. Determine the domain. Make sure it makes sense. Determine the max or min by differentiation. (Find the first derivative and set it equal to zero) If the maximum or minimum could be at the endpoints, you have to check them.

We can minimize the material by minimizing the area. Example: What dimensions for a one liter cylindrical can will use the least amount of material? Motor Oil We can minimize the material by minimizing the area. We need another equation that relates r and h: area of ends lateral area

Example 5: What dimensions for a one liter cylindrical can will use the least amount of material? area of ends lateral area

A manufacturer wants to design an open box having a square base and a surface area of 108 in2. What dimensions will produce a box with maximum volume? Since the box has a square base, its volume is V = x2h h Note: We call this the primary equation because it gives a formula for the quantity we wish to optimize. x x The surface area = the area of the base + the area of the 4 sides. S.A. = x2 + 4xh = 108 We want to maximize the volume, so express it as a function of just one variable. To do this, solve x2 + 4xh = 108 for h.

3x2 = 108 Substitute this into the Volume equation. To maximize V we find the derivative and it’s C.N.’s. 3x2 = 108 We can conclude that V is a maximum when x = 6 and the dimensions of the box are 6 in. x 6 in. x 3 in.

Find the points on the graph of y = 4 – x2 that are closest to the point (0,2). What is the distance from the point (x,y) and (0,2)? 4 3 2 1 (x,y) (x,y) We want this dist. to be minimized.

= 2x(2x2 – 3) = 0 C.N.’s imaginary dec. dec. inc. inc. 1st der. test dec. dec. inc. inc. 1st der. test minimum minimum Two closest points.